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HCN Channels May Trigger
Persistent Spiking in Dentate Gyrus
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and Marlene Bartos

(see pages 4131– 4139)

In the traditional model of neurons, excit-
atory inputs to dendrites cause depolar-
ization that spreads across the soma to the
axon initial segment, where, if a threshold
is surpassed, an action potential is gener-
ated. There are many exceptions to this
general rule, however. Some neurons ex-
hibit rebound spiking when freed from in-
hibition and others produce spike trains
without additional synaptic input when
depolarized above a plateau potential. In
addition, recent studies revealed that
some neurons enter a persistent firing
mode after receiving prolonged, high-
frequency stimulation. For example, re-
peated stimulation of interneurons in
hippocampal CA1 led to persistent firing
in which action potentials were generated
in the distal axon (Sheffield et al., 2010,
Nat Neurosci 14:200).

Elgueta et al. report that a similar phe-
nomenon occurs in perisomatic inhibiting
interneurons (PIIs) targeting granule cells in
the dentate gyrus. Persistent firing was in-
duced by repeatedly injecting long current
steps into PII somata, evoking spike trains at
30–100 Hz, stimulating perforant-path in-
puts to PIIs at 30 Hz, or producing anti-
dromic action potentials by extracellularly
stimulating PII axons. Persistent firing aver-
aged �50 Hz and typically lasted �4.5–20 s.
Spike shapes suggested that persistent firing
in dentate PIIs, like in CA1 interneurons,
originated in the distal axon. Consistent
with this, optically silencing axons for 5 s
greatly reduced the duration of persistent
firing. The mechanisms underlying the
induction of persistent firing appear to dif-
fer in CA1 and dentate gyrus, however.
Whereas activation of voltage-gated Ca2�

channels enhanced persistent firing in CA1
interneurons, blocking these channels en-
hanced persistent firing in dentate PIIs.

Interestingly, brief axonal hyperpolariza-
tion increased the duration of persistent
firing, suggesting that hyperpolarization-
activated cyclic-nucleotide-gated ion channels

(HCNCs) contribute to the phenomenon.
Indeed, although it seems counterintuitive
that hyperpolarization-activated channels
would be activated during high-frequency
firing, persistent firing could not be induced
in the presence of HCNC inhibitors. The
authors hypothesized that accumulation of
cAMP during high-frequency stimulation
causes a depolarizing shift in the activation
curve of HCNCs. A computational model
confirmed that such a shift can lead to per-
sistent firing. The induction of persistent fir-
ing in inhibitory neurons might prevent
pathological hyperactivity after prolonged
activation of neural networks.

Bee Pheromones Are Processed by
Separate Neural Pathways
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Odorant molecules bind to receptors on
olfactory sensory neurons (OSNs), which
transmit information to glomeruli in the
first olfactory processing site in the CNS.
In most species, each OSN expresses a sin-
gle olfactory receptor type and all OSNs
converging on a single glomerulus express
the same receptor. But because most ol-
factory receptors bind multiple molecules
and most odorants activate multiple re-
ceptors, odor representations are typically

distributed across multiple glomeruli in a
combinatorial code. Some pheromones
are an exception to this rule, however. For
example, honey bee drones express an ol-
factory receptor that responds only to a
component of queen retinue pheromone
(Wanner et al., 2007, Proc Natl Acad Sci U
S A 104:14383). This component likely ac-
tivates a single glomerulus in the bee an-
tennal lobe (AL), and because projection
neurons (PNs) that transmit information
from the AL to higher processing areas
typically innervate a single glomerulus,
some PNs probably respond selectively to
this one pheromone component. This
labeled-line organization might ensure
that drones respond reliably to the queen
pheromone.

Honey bees use a wide variety of pher-
omones to induce diverse behaviors such
as tending the queen and brood, aggregat-
ing in swarms or at the hive entrance, and
attacking intruders. Therefore, they are a
valuable model system for studying the
neural bases of pheromone responses. To
determine whether labeled lines are com-
monly used for pheromone coding in
honey bees, Carcaud et al. used Ca 2� in-
dicators to selectively label PNs that pro-
jected in the medial or lateral antennal
lobe tracts (m-ALT and l-ALT, respec-
tively). Consistent with the labeled-line
hypothesis, components of queen man-
dibular pheromone elicited strong signals
only in l-ALT PNs, whereas most brood
pheromone components elicited activity
only in m-ALT PNs. In contrast, compo-
nents of other queen pheromones and
most components of worker alarm and
aggregation pheromones elicited signifi-
cant activity in both tracts. Furthermore,
all pheromones elicited activity in multi-
ple glomeruli, and most of these glomeruli
responded to multiple pheromones.

While these data indicate that honey bee
queen and brood pheromones are pro-
cessed in distinct neural pathways, they sug-
gest most pheromones are not coded by
labeled lines. Nonetheless, the results pro-
vide a foundation for future studies of the
neural pathways underlying pheromones’
ability to induce specific behaviors.
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A dentate gyrus PII that shows persistent firing after pro-
longed activation. See the article by Elgueta et al. for details.
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