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The package sra (Selection Response Analysis) proposes a set of functions implementing genetic mod-
els describing the evolution of populations submitted to artificial selection. This document is an informal
tutorial describing the practical use of the software, as well as some basic concepts in quantitative genetics
models. The theoretical concepts and the models on which the package is based are fully described in the
following reference:

• A modelling framework for the analysis of artificial-selection time series. A. Le Rouzic, D. Houle,
and T.F. Hansen (2011), Genetics Research (in press).

Additional information about similar models or alternative statistical frameworks can be found in the
literature. The reader may want to have a look at e.g.:

• Evolution and Selection of Quantitative Traits. B. Walsh and M. Lynch, unpublished http://
nitro.biosci.arizona.edu/zbook/volume_2/vol2.html.

• Estimating genetic architectures from artificial-selection responses: a random-effect framework. A.
Le Rouzic, H.J. Skaug, and T.F. Hansen (2010b), Theor. Popul. Biol. 77:119–130.

The last version of the package can be downloaded on the official CRAN site (http://cran.
r-project.org/web/packages/sra/index.html), where the reference manual is also avail-
able. More information about R in general, including manuals and tutorials, can be found on http:
//www.r-project.org.

For clarity, this tutorial is devoid of scientific citations: these can be found in the references above.
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1 Context

Artificial selection expriments are common designs in both breeding sciences and evolutionary biology.
The procedure consists in measuring a trait in all individuals of a population, and to select a subset of
this population for breeding, based on the measured phenotype. Provided that the variation in the trait
value relies on genetic bases, the selected character will be more frequent or more pronounced among the
offspring of the selected individuals, and the process can be repeated for several generations, accumulating
genetic change in the course of time. The trait can be discrete (such as presence/absence of a character) or
continuous (e.g. size, weight...). The current statistical framework can handle only the latter, i.e. ”classical”
continuous quantitative characters.

The response to artificial selection, i.e. the rate of change under selection pressure, depends both on
the selection strength and on the genetic architecture of the character. Most of the time, this genetic archi-
tecture is underlain by several genes of various effect on the trait of interest, and by complex interactions
between these genes and the environment. Dissecting genetic architectures is in general costly and often
not completely satisfactory (only a subset of the important genes can be mapped), and it is common to
describe genetic architectures by a few parameters designed to summary their evolutionary properies. The
additive genetic variance (σ2

A) of the population is probably the most interesting of them. The additive
variance is the part of the genetic variation that is directly heritable, transmitted from the parents to the
offspring. Consequently, the additive variance determines precisey the genetic progress in the population.
Another important quantity is the environmental variance σ2

E which represents the residual variance of the
genetic system, i.e. the part of the phenotypic variance (σ2

P ) that cannot be explained by genes. Often, this
unexplained variance can be larger than the genetic variance.

The current package implements some of the models described in Le Rouzic et al. 2011. These models
are designed to catch and analyze the changes in genetic architectures in the course of time in artificially-
selected populations. Models are based on summary statistics (means and variances), so that knowing the
pedigree structure is unnecessary. Two main families of models are proposed: ”phenomenological” models
catch the trends without proposing biological explanations, while ”mechanistic” models implement known
genetic mechanisms and attempt at interpreting the changes in terms of e.g. genetic drift, mutations, or epis-
tasis. Models are fit by maximizing numerically their likelihood, and the functions described below provide
user-friendly wrappers for the optimization routines mle and optim provided in the base distribution of R.
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2 Model overview

The statistical setting and the most important models are summarized in the following paragraphs. For more
information, the models and the likelihood functions are detailed in Le Rouzic et al. 2011.

2.1 General framework

The statistcal framework is based on a maximum-likelihood fit of non-linear models. Three variables de-
scribing the genetic architecture of a population are tracked during the selection process: the phenotypic
mean µ, the additive genetic variance σ2

A, and the environmental variance σ2
E . The part of genetic variance

that is not additive is thus considered along with environmental variance. Change in the mean is predicted
by the Lande equation: µt+1 = µt +βtσ

2
At

, where βt is the selection gradient at generation t. The minimal
model features three parameters (Θ = µ1, σ

2
A1
, σ2

E1
), and additional parameters describing changes in σ2

A

and σ2
E can be considered (see below).

This model predicts, for each generation, the phenoptypic mean of the population (µt) and the pheno-
typic variance (σ2

At
+ σ2

Et
). The vector of parameters Θ is then adjusted numerically so that the likelihood

of the predicted time series given the observed data (mean and variance at each generation) is minimized.

2.2 Phenomenological models

The first family of models implemented in the package sra, termed ”phenomenological”, aims at describ-
ing the changes in the genetic architecture without a priori assumptions on the genetic mechanisms that are
involved. The model is inspired from an autoregressive setting, such as:

σ2
At+1

= kA0 + kA1σ
2
At
,

σ2
Et+1

= kE0
+ kE1

σ2
Et
.

Changing the number of autoregressive terms makes model selection possible, since it is very easy to
construct simpler or more complex models (e.g. σ2

At+1
= kA0

+ kA1
σ2
At

+ kA2
σ2
At−1

. . . ). Such high-lag
models do not necessarily mean that information is transmitted several generations ahead: additional lags
may rather reflect hidden variables that are not accounted for explicitly in the models.

2.3 Mechanistic models

Mechanistic models implement known genetic mechanisms that can affect the genetic architecture during
selection response. Indeed, it is unlikely that the additive genetic variance remains constant during long
selection expriments. So far, the model can account for:

• The deterministic decrease of genetic variation due to genetic drift (the strength of this decrease
depends on the parameter Ne, the effective population size).

• The regular increase of the genetic variance due to mutations, through the mutational variance σ2
M .

• The influence of linkage disequilibrium generated by the selection (the ”Bulmer effect”). No addi-
tional parameter is necessary.

• The fact that the number of loci is finite (the number of loci is n).

• The influence of directional epistasis, through the directional epistasis coefficient ε.

• Genetic and environmental canalization (decrease or increase of variance associated to a particular
state of the initial population), described by parameters kg and kc respectively.

• The fact that natural selection may contradict artificial selection (parameter s, the strength of natural
stabilizing selection).
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2.4 Scaling issues

Scaling is an important issue in quantitative genetics. The simplest models generally rely on the assumption
that alleles combine additively. However, for most traits, this assumption is dubious. Indeed, most traits
such as weight or size are on a ratio scale, and are by nature multiplicative. It is thus necessary to change
their scale from a multiplicative to an additive scale before fitting additive models, which can be achieved
with a logarithm transformation.

However, logarithm transformation does not necessarily address any type of scaling issue. Two addi-
tional models are considered here, assuming different constraints on genetic architectures.

One of these models assume that additive and environmental variances change with the mean of the
population, i.e. that the ratios IA = σ2

A/µ
2 and IE = σ2

E/µ
2 are the quantities that are tracked by the

model. These are the ”evolvability” models.

The second model assumes that environmental variance scales with the additive variance, so that the
”heritability” h2 = σ2

A/(σ
2
A + σ2

E) becomes the quantity of interest.

2.5 Model selection

One of the strengths of this approach is that models can be compared, so that some hypotheses can be
discarded and others further tested. The fit itself (the likelihood of the model) cannot be used as such,
because by definition more complex models always fit better due to overparameterization. The likelihood
has to be penalized for the number of parameters, the easiest way to proceed being the calculation of the
Akaike information criterion AIC = −2 log(L) + 2k, where L is the likelihood of the model and k the
number of parameters. Smallest AIC values correspond to the best models.

2.6 Parameter transformation

Most convergence algorithms work better when they are allowed to explore the parameter set freely, and
models were implemented with transformed parameters, so that the transformed parameters can take any
value between −∞ and +∞. After convergence on the maximum likelihood, parameters have to be back-
transformed for interpretation. The two transformations that were used are:

• The logarithm transformation for parameters that should be strictly positive (e.g. additive variance):
Y = log(X), reversed by X = exp(Y ).

• The logistic transformation for parameters that should remain between 0 and 1 (e.g. heritability):
Y = log(X/(1−X)), reversed by X = 1/(1 + exp(−Y )).

The parameter names in the functions were chosen to reflect the corresponding tranformation.

3 Data

The models implemented in the package sra require several sources of data:

• The phenotypic mean of the population each generation, ȳ,

• The phenotypic variance each generation, s2y ,

• The phenotypic mean of the selected breeders, ȳ∗,

• The phenotypic variance among breeders, s2y∗ ,

• The population size N .
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Strincly speaking, only ȳ, s2y , and ȳ∗ are mandatory. If not provided, s2y∗ is calculated from the other
information (mean and variance of the population, as well as the selection intensity), assuming a Gaussian
distribution of phenotypes. The population size N is fixed arbitrarily at 100 when not provided (the results
should not look too wrong, but confidence intervals will be irrelevant).

The mean of selected individuals is necessary to compute the selection gradient β ' (ȳ − ȳ∗)/s2y . The
phenotypic variance of breeders conditions the strength of linkage disequilibrium, and may also be used in
other specific models.

Data should be provided as vectors of lenght T , where T is the number of generations. The last element
of ȳ∗ and s2y∗ can be empty (NA), because the last generation is not submitted to selection.

The prototype of the function sraData is:

sraData(phen.mean, phen.var, phen.sel, var.sel=NULL, N=NULL,
gen=NULL, rep=NULL)

The five first arguments correspond to the data itself, and the paramaters gen and rep allow to specify
the generation number and the repetition (in case of several time series). Note that gaps in the time series are
not allowed, since the selection gradient must be known for each generation to predict the selection response
of the population. The function performs basic checks to ensure that the data is suitable for analysis (no
duplicated generations etc).

Data can be provided directly to the sraData function, such as in the fictive example below:

> dataset <- sraData(
phen.mean=c(10, 12, 13, 16, 15, 17),
phen.var =c(9, 11, 8, 14, 15, 13),
phen.sel =c(14, 15, 16, 18, 18, NA),
var.sel =c(6, 6, 7, 8, 8, NA),
N =c(40, 38, 36, 41, 42, 35),
gen =c(1, 2, 3, 4, 5, 6),
rep =c("A", "A", "A", "A", "A", "A"))

The resulting object is a data frame of class "sradata", which is recognized as such by the other
functions of the package.

The rep field can be any character string (it will be interpreted as a factor) identifying unique time
series. It is particularly useful when considering multiple time series. Large data sets can easily be imported
from a file and provided column by column to the sraData() function.

4 Model fitting

4.1 Results of model fitting

4.1.1 Maximum-likelihood estimates and confidence intervals

The basic phenomenological model is implemented in the function sraAutoreg.

> modelP1 <- sraAutoreg(dataset)

The maximum-likelihood estimates of model parameters can be accessed with the coef function:

> coef(modelP1)
mu0 logvarA0 logvarE0 logkA1 logkE1

9.98386946 1.51123075 1.54461689 0.03450894 0.15307379
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Figure 1: Fit of a simple phenomenological model. The plot on the left represents the phenotypic mean of
the population, and on the right the phenotypic variance of the population. Symbols and dotted lines feature
the data, and the plain line represents the model prediction. On the variance plot, the hyphenated line is the
prediction for the additive variance.

The default model has 5 parameters: the phenotypic mean at the first generation, the initial additive
and environmental variances, and the rates at which these variances change. Parameters that cannot be
negative are log-transformed for fitting, and need to be back-transformed for interpretation. For instance,
the estimate of the additive variance at the first generation is σ̂2

A1
= exp(1.511) = 4.53, and its rate of

change is k̂A1
= exp(0.0345) = 1.04 (i.e. additive variance increases by 4% per generation).

The confidence intervals of the parameter estimates can be obtained calling confint:

> confint(modelP1)
[,1] [,2]

mu0 9.08207396 10.8856650
logvarA0 1.08078407 1.9416774
logvarE0 0.84551509 2.2437187
logkA1 -0.22772017 0.2967380
logkE1 -0.09902335 0.4051709

The two columns correspond to the edges of the 95% confidence interval. The values also have to be
transformed to be interpreted. Note that for performance reasons, confidence intervals are calculated from
the diagonal of the variance-covariance matrix, instead of being derived from the profile likelihood.

4.1.2 Graphics

One of the best way to visualize the model is to use the specific plot function provided:

> plot(modelP1)
> plot(modelP1, var=TRUE)

Figure 1 presents the output of the plot function. The var=TRUE option plots the dynamics of the
variance rather than the mean. Note that by default, the legend provides maximum-likelihood estimates of
the parameters (on their original scale) as well as the AIC score of the model.
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4.1.3 Changing the scale

The previous setting considers the dynamics of genetic architectures from a variance-centered view. Alter-
natives include:

• Log transformation

> coef(sraAutoregLog(dataset))
mu0 logvarA0 logvarE0 logkA1 logkE1

2.25629393 -3.07732727 -3.38491799 -0.25958069 0.02900387
Warning message:
In sraData(rep = sradata$rep, gen = sradata$gen, phen.mean = 2 * :

The phenotypic variance of breeders was not provided.
An educated guess will be made, model fitting might be inaccurate.

The parameters describe the dynamics of the log-transformed data set. The warning message is due to
the fact that the variance of the breeders had to be recomputed based on a log-normality assumption
(and truncation selection), because it cannot be directly deduced from the original data. Note that
very similar results would have been obtained if the standard model was fed with mean and variances
of log-transformed measurements. This, however, makes model selection impossible (the data set
being different, AIC differences become irrelevant).

• Models focusing on mean-scaled variances (”evolvability”)

> coef(sraAutoregEvolv(dataset))
mu0 logIA0 logIE0 logkA1 logkE1

10.02200806 -3.15298944 -3.20918300 -0.21295393 -0.02444584

IA and IE are respectively σ2
A/µ

2 and σ2
E/µ

2. kA and kE describe the dynamics of IA and IE in the
same way as for the variances, i.e. IAt+1 = kA0 + kA1IAt + kA2IAt−1 + . . . .

• Models focusing on heritability

> coef(sraAutoregHerit(dataset))
mu0 logith20 logvarP0 logkA1 logkE1

9.96783661 0.01199777 2.21188316 -0.07920105 0.10467725

In this setting, kA parameters describe the changes in h2 = σ2
A/(σ

2
A + σ2

E), and kE describes the
changes in σ2

P = σ2
A + σ2

E .

4.2 Building more complex phenomenological models

4.2.1 Increasing complexity

The complexity of the model can be adjusted with the active option, by providing a vector of four
booleans representing the ”activity” of the four first lag parameters. For instance, the default model assumes
that active=c(FALSE, TRUE, FALSE, FALSE), i.e. that only lag 1 parameters (kA1

and kE1
are

active. To activate both lags 0 and 1, the command is:

> modelP2 <- sraAutoreg(dataset, active=c(TRUE,TRUE,FALSE,FALSE))
> coef(modelP2)

mu0 logvarA0 logvarE0 relativekA0 relativekE0 logkA1
9.97687018 1.51483260 1.46671095 0.25755633 0.31564349 -0.24700546

logkE1
-0.04102936
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Note that for scaling reasons, kA0
and kE0

are expressed relative to σ2
A1

and σ2
E1

respectively.

Fine parameterization can be achieved by fixing some parameters using the fixed option, similar to
the one provided by mle. For instance, one can force additive variance to be constant while environmental
variance may vary:

> coef(sraAutoreg(dataset, active=c(TRUE,TRUE,FALSE,FALSE),
fixed=list(relativekA0=0, logkA1=log(1))))
mu0 logvarA0 logvarE0 relativekE0 logkE1

9.92892263 1.56043513 1.42086473 0.37432962 -0.05101302

By default, kA and kE parameters are forced to be > 0. Allowing them to be negative allows more
flexibility, including the possibility to describe cyclic behaviors, at the cost of a more complex likelihood
function (and thus potential convergence issues).

> coef(sraAutoreg(dataset, active=c(TRUE,TRUE,FALSE,FALSE),
negative.k=TRUE, rep=10))
mu0 logvarA0 logvarE0 relativekA0 relativekE0 kA1

10.054805 1.570043 1.384323 2.233791 3.970297 -1.693604
kE1

-1.103415

The option negative.k=TRUE changes the parameterization of the model and fits the model on e.g.
kA1 and kE1 instead of logkA1 and logkE1. rep=10 is a way to increase the number of trials to find
the maximum likelihood, reducing convergence problems (see next paragraph).

4.2.2 Dealing with convergence issues

The most complex models may generate convergence issues:

> confint(sraAutoreg(dataset, active=c(TRUE,TRUE,TRUE,FALSE)))
[,1] [,2]

mu0 9.0524665 10.900256
logvarA0 0.9502235 2.070951
logvarE0 0.5020707 2.423552
relativekA0 NaN NaN
logkA1 NaN NaN
logkA2 NaN NaN
relativekE0 -1.9226011 2.508723
logkE1 -3.6083929 3.504780
logkE2 -102.5519053 96.005756
Warning messages:
1: In sqrt(diag(object@vcov)) : NaNs produced
2: In sqrt(diag(object@vcov)) : NaNs produced
3: In sqrt(diag(object@vcov)) : NaNs produced
4: In sqrt(diag(object@vcov)) : NaNs produced

The warnings indicate that the optim routine did not manage to converge towards a maximum of
the likelihood function, since the second derivative is negative for some parameters. This is likely to be
due to the convergence towards a local maximum or a saddle point on a complex and rugged likelihood
function. The best way to solve such a problem is to provide good stating values for every parameter
(through the start option). However, in some cases, this may be quite difficult, and the sra package
provides an algorithm that can generate random vectors of starting values, and pick the best model out of
several convergence trials. For instance, the following is the best amongst rep=100 convergence attemps.
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> confint(sraAutoreg(dataset, active=c(TRUE,TRUE,TRUE,FALSE), rep=100))
[,1] [,2]

mu0 9.074815 10.860446
logvarA0 1.062664 1.983493
logvarE0 0.357098 2.393155
relativekA0 -6.412921 6.443444
logkA1 -6.781094 6.735324
logkA2 -103.697783 96.814506
relativekE0 -2.786469 4.044168
logkE1 -34.706981 28.406871
logkE2 -2.068047 1.826611

The rand option can be adjusted to allow more or less randomness in the starting values. Although
convenient, this approach remains problematic for several reasons, in particular because fitting the same
model several times can be quite time consuming, and because one cannot be sure that the resulting model
is really the maximum-likeihood (the real maximum can still be in a unexplored region of the parameter
set).

4.3 Fitting mechanistic models

Mechanistic models implement quantitative genetics models and attempt at estimating the value of param-
eters of interest.

The simplest mechanistic model is the constant-variance model, which is generally associated to an
infinitesimal genetic architecture (infinite number of loci of very small effect). The corresponding function
is sraCstvar and is used in the same way as for the phenomenological approach:

> coef(sraCstvar(dataset))
mu0 logvarA0 logvarE0

9.863218 1.627514 2.012143

The results of this model do not coincide exactly with the corresponding phenomenological model,
because mechanistic models include by default the expected effect of linkage disequilibrium due to selection
(Bulmer effect). This effect can be disabled easily, falling back to the result of the phenomenological model
with constant variances:

> coef(sraCstvar(dataset, Bulmer=FALSE))
mu0 logvarA0 logvarE0

9.919126 1.561737 1.982280
> coef(sraAutoreg(dataset, active=c(FALSE,FALSE,FALSE,FALSE)))

mu0 logvarA0 logvarE0
9.919126 1.561737 1.982280

Alternative mechanistic models can include genetic drift, mutational variance, or directional epistasis:
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> coef(sraDrift(dataset))
mu0 logvarA0 logvarE0 logNe

9.863321 1.627620 2.012259 8.353398
> coef(sraMutation(dataset, start=list(logvarM=log(0.1))))

mu0 logvarA0 logvarE0 logNe logvarM
10.17368391 1.32857000 1.85082825 5.03612374 -0.08604935
> coef(sraDirepistasis(dataset, fixed=list(logNe=log(10))))

mu0 logvarA0 logvarE0 logepsilon
10.177836 1.326353 1.801145 -2.646717
> coef(sraDrift(dataset, start=list(logn=0),

fixed=list(logNe=log(1000))))
mu0 logvarA0 logvarE0 logn

9.862883 1.628056 2.012711 6.168046
> coef(sraCanalization(dataset))

mu0 logvarA0 logvarE0 kc kg
9.94813929 1.54815006 1.43875897 0.12330431 0.03741515
> coef(sraSelection(dataset))

mu0 logvarA0 logvarE0 logNe s o
9.87727530 1.93290039 1.79771914 11.29513495 -0.01292434 18.69352316

This illustrates how starting and fixed values can be used to help model convergence and customize the
parameter set. Indeed, it is sometimes difficult to reach convergence when two parameters having a similar
effect on the dynamics are activated at the same time. This is particularly true for Ne, the effective size of
the population, and n, the effective number of loci. The meaning of the different parameters is detailed in
Le Rouzic et al. 2011.

Note that all the mechanistic model functions (except sraDirEpistasis) are based on the same
underlying model, and can thus be interchanged provided that the proper combination of parameters is
activated:

> coef(sraCanalization(dataset))
mu0 logvarA0 logvarE0 kc kg

9.94813929 1.54815006 1.43875897 0.12330431 0.03741515
> coef(sraDrift(dataset, start=list(kc=0, kg=0), fixed=list(logNe=1e10)))

mu0 logvarA0 logvarE0 kc kg
9.94813929 1.54815006 1.43875897 0.12330431 0.03741515

The set of active parameters for each function is detailed in the table 1.

4.4 Model selection

Model selection consists in sorting different models according to their relevance, and thus defining the ones
that describe the best the data out of a set of potential models. Model selection has to consider both the fit
of the model, which can be quantified by its likelihood, and the possibility of overparameterization. Indeed,
the likelihood of the models increases when adding parameters:

> logLik(sraAutoreg(dataset, active=c(FALSE,FALSE,FALSE,FALSE)))
’log Lik.’ -617.6975 (df=3)
> logLik(sraAutoreg(dataset, active=c(TRUE,FALSE,FALSE,FALSE)))
’log Lik.’ -615.8893 (df=5)
> logLik(sraAutoreg(dataset, active=c(FALSE,TRUE,FALSE,FALSE)))
’log Lik.’ -615.9386 (df=5)
> logLik(sraAutoreg(dataset, active=c(TRUE,TRUE,FALSE,FALSE)))
’log Lik.’ -615.883 (df=7)
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Code C D M Cn Cno S De
Initial phenotypic mean µ1 mu0 4 4 4 4 4 4 4
Initial additive variance σ2

A1
logvarA0 4 4 4 4 4 4 4

Initial environmental variance σ2
E1

logvarE0 4 4 4 4 4 4 4

Effective population size Ne logNe 4 4 4 4
Effective number of loci ne logn 8

Mutational variance σ2
M logvarM 4

Environmental canalization strength kc kc 4 4 8
Genetic canalization strength kg kg 4 4 8

Optimum phenotype o o =mu01 4 =mu01 8
Selection strength s s 4 8

Directional epistasis ε logepsilon2 8 8 8 8 8 8 4

Table 1: Availability of the parameters and default setting for the seven default mechanistic model func-
tions. Checks (4) mark default parameters, crosses (8) denote unavailable parameters. Blanks mean
that the parameter can be activated by the user. Function codes: C: sraCstvar, D: sraDrift, M:
sraMutation, Cn: sraCanalization, Cno: sraCanalizationOpt, S: sraSelection, De
sraDirEpistasis. 1: If unspecified, the optimum is considered as the same as the initial phenotypic
mean. 2 Two models are actually fitted for directional epistasis: one model with a positive directionality
(logepsilon) and another with a negative directionality (minuslogepsilon). The best model is then
determined according the the likelihood and only one of these parameters is returned.

However, this does not necessarily mean that more complex models are better, since adding parameters
also increases the risk of overparameterization. Comparing the AIC gives some hints on whether or not it
is worth including additional parameters:

> AIC(sraAutoreg(dataset, active=c(FALSE,FALSE,FALSE,FALSE)))
[1] 1241.395
> AIC(sraAutoreg(dataset, active=c(TRUE,FALSE,FALSE,FALSE)))
[1] 1241.779
> AIC(sraAutoreg(dataset, active=c(FALSE,TRUE,FALSE,FALSE)))
[1] 1241.877
> AIC(sraAutoreg(dataset, active=c(TRUE,TRUE,FALSE,FALSE)))
[1] 1245.766

The lowest AIC remains the one in which variances do not change (AIC=1241.395), but the three first
models remain very close in term of explanatory power (AIC differences above 2 units correspond to p-
values below 0.05). Although the previous examples are based on phenomenological models, it is possible
to perform model selection among mechanistic models as well, based on the same procedure.

5 Getting involved

5.1 Questions and bug reports

General questions about R and the base packages can be asked on various mailing lists, such as R-help
(https://stat.ethz.ch/mailman/listinfo/r-help).

Specific questions about the SRA model and its applications to data should be sent to the corresponding
authors of the papers cited in the introduction.

Questions, bug reports, and suggestions about the sra package, the implementation of the functions,
and the official documentation should be sent to the official maintainers of the package (type ?sra in R
after having loaded the sra package).

Remarks or comments about this tutorial should be sent to the author, Arnaud Le Rouzic <lerouzic@
legs.cnrs-gif.fr>.
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5.2 Contribution

The sra package is released under a free (GLP-2) license and it is possible to install, study, execute,
modify and publish the modifications as long as the GPL-2 license is respected (in brief: cite the authors
and keep the license unchanged in the modified versions, read the full conditions for more details http:
//www.gnu.org/licenses/gpl-2.0.html).

Contributions, in terms of suggestions, bug reports, bug fixes, and new features are welcome.
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