
Package noia: tutorial

Arnaud Le Rouzic

August 5, 2010

The package noia is an implementation for R of the Natural and Orthogonal InterAction model
(NOIA), a statistical framework aiming at estimating and manipulating genetic effects of quantitative char-
acters. This page is an informal tutorial describing the practical use of the software, as well as some basic
concepts in quantitative genetics modeling. It comes as a complement of several sources of information:

• The statistical model is originally described in Álvarez-Castro & Carlborg (2007) Genetics 176:1151-
1167.

• The application of the model to read data by least square regression is the topic of Álvarez-Castro,
Le Rouzic & Carlborg (2008) PLoS Genet. 4:e1000062.

• The implementation of the model in a software is described in Le Rouzic & Álvarez-Castro (2008)
Evol. Bioinform. 4 225-235.

The last version of the package can be downloaded on the official CRAN site (http://cran.
r-project.org/web/packages/noia/index.html), where the reference manual is also avail-
able. More information about R in general, including manuals and tutorials, can be found on http:
//www.r-project.org.

For clarity, this tutorial is devoid of scientific citations: these can be found in the references above.

Contents

1 Context 2

2 Models of genetic effects 2

2.1 A simple example in haploid species . 2

2.2 Genetic effects depend on the reference genotype . 2

2.3 Average reference point . 3

2.4 The diploid case . 3

2.5 Terminology and nature of genetic effects . 3

3 The NOIA model 4

3.1 General framework . 4

3.2 Orthogonality . 5

3.3 Least square regression . 5

3.4 The multilinear model . 5

1

4 The noia package 6

4.1 What the package can do . 6

4.2 Data input . 7

4.3 Linear regression . 9

4.4 Genetic models . 12

4.5 Genotype-phenotype map . 14

4.6 Multilinear regression . 14

5 Getting involved 16

5.1 Questions and bug reports . 16

5.2 Contributions . 16

1 Context

The determination of the genetic basis of traits of interest remains an important activity in modern genetics.
Yet, the process towards the understanding of the genetic architecture of quantitative characters does not
stop with the identification of the DNA sequences that generate differences within an experimental pop-
ulation. Indeed, of tremendous interest is the quantification of the effect of each gene variant, by itself
and through its interactions with other genes. This document provides a short and (hopefully) practical
introduction to genetic effect models, presents its recent advances, and describes how to use this theory to
analyze real datasets.

2 Models of genetic effects

Genetic effects are a way to quantify the effect of alleles or allele combinations in terms of phenotypic units.
There are different ways to compute them, corresponding to different meanings of the obtained values.

2.1 A simple example in haploid species

The simplest case can be found in haploid organisms, where each individual carry only one allele at each
gene. Consider a single locus and two alleles A and a. Individuals of genotype a weight in average 10g,
individuals of genotype A weight 13g in average. The effect of substituting a by A is +3g (and conversely,
the effect of substituting A by a is -3g). More formally, in the background defined by the genotype a, allele
A has an effect of +3g: this is the average impact of substituting an allele A in a reference population of
genotype a.

2.2 Genetic effects depend on the reference genotype

Cases in which only one gene is involved in the expression of a complex phenotype are, however, excep-
tional. Most of the time, quantitative traits are polygenic, and the effects of various genes do not necessarily
add up. In practice, they actually never add up perfectly, at least because of measurement and sampling er-
ror, but mostly because biological processes are not additive. Such deviations from additivity (interactions)
between genes are referred to as epistasis.

Back to the haploid example, but with two diallelic genes, say, a and A alleles at a first locus, and
b / B alleles at a second locus. Four genotypes are possible, with for instance ab: 10g, Ab: 13g, aB: 10g,
AB: 15g. This example aims at illustrating a key property of genetic effects: genetic effects depend on the
reference point. If the reference genotype is ab, then the genetic effect at the first locus is +3g: substituting
an allele A in genotype ab leads to genotype Ab, which is 3g heavier than ab. In this ab background, the

2

effect of the second locus is 0g (substituting a B allele does not change the phenotype). Adding both A and
B alleles at the same time increases the phenotype by 5g, i.e. 2g more than if there were no interactions:
the interaction effect is +2g.

On the contrary, if the genetic background is the genotype aB, substituting an allele A will lead to a
gain of +5g. The effect of a substitution at the first locus is thus +3g in one genetic background, and +5g in
another background.

The fact that genetic effects change depending on the reference point drives the whole complexity of the
field, and has generated a number of scientific contributions (references can be found in the papers listed at
the top of the page).

2.3 Average reference point

So far, the examples used specific genotypes as reference points. It is common to use genotype combinations
as reference points instead, according to some arbitrary preference or to empirical considerations. For
instance, the average effect of the allele A above would be +4g in a background constituted by 50% b and
50% B genotypes. Using such population reference points is important when calculating the actual genetic
effects in a real population, since they directly condition the decomposition of genetic variance.

2.4 The diploid case

The presence of heterozygotes in diploid species makes the whole picture slightly more complicated, and
genetic models turn out to be actually needed. With one locus and two alleles a and A, three genotypes are
possible (aa, aA and AA). If the trait is perfectly additive, the heterozygote Aa is exactly between aa and
AA. For instance, if aa: 10g, aA: 12g, AA: 14g, adding up one A allele increases the weight by 2g (and
consequently, adding two A alleles increases the phenotype by 4g).

If the heterozygote is not exactly mid-way between both homozygotes, the discrepancy will be ac-
counted for by a ’dominance’ effect. For instance, if aa: 10g, aA: 13g, AA: 14g, the dominance effect will
be +1g, since the heterozygote aA is 1g heavier than what would be expected under a strict additive case.
The difference between AA and aa is still 4g, so that the additive effect for this locus is 2g, i.e. half the
effect of substituting two alleles A.

Epistasis is treated in the same way as for the haploid case, and has the same consequences: genetic
effect change depending on the background in which they are considered. Measuring epistasis-related
genetic effects is significantly more complex, since three kinds of interactions can be defined when two
loci are considered: the additive by additive (A×A) interaction describes how additive effects are affected
by each other (i.e. how much the double homozygote AABB differs from what would be expected under
additivity), dominance-by-dominance (D×D) quantifies the discrepancy between the actual value of the
double heterozygote aAbB and the expectation if there were no epistatic interactions, and additive-by-
dominance (A×D) effects measure the impact of epistasis on genotypes like AAbB and aABB. In total,
for two loci, nine genetic effects are necessary to fully describe the nine genotypic values: the reference
effect, two additive effects, two dominance effects, one A×A effect, one D×D effect, and two A×D effects.
For L loci, 3L effects can be described, with interactions up to L levels (for instance, between 3 loci, it is
possible to consider e.g. A×A×A or A×D×D effects, which are more and more difficult to interpret when
the number of loci increase).

In the same was as for the haploid case, genetic effects can easily be defined from any reference point,
including a mixture between genotypes.

2.5 Terminology and nature of genetic effects

The history of the definition of genetic effects is interesting by itself. The concepts on which quantitative
genetics are founded were mainly described by R.A. Fisher, and they were mostly statistical: populations
are characterized by the decomposition of their genetic variance components (additive variance, dominance
variance, etc), but of little interest were the individual genetic effects. The theory was later extended to

3

account for variance components related to epistasis, but a lot of confusion remained about the nature of
individual genetic effects, at least among non-specialists, until the 1990s. It is now admitted that there are
several kinds of genetic effects, which describe different aspects of the genotype-phenotype relationship;
here is a tentative classification distinguishing four cases:

1. When the reference genotype is a single genotype, genetic effects describe the phenotypic conse-
quences of substituting alleles in this genotype.

2. When the reference genotype is an arbitrary, constant mixture of genotypes, genetic effects describe
the substitution effect in such a background.

3. When the reference genotype is a mixture of genotypes defined in such a way that they match the
population under study, genetic effects can still describe the effects of substituting alleles, but these
will be average effects in a population and will depend not only on the genotype-phenotype map, but
also on the allele and genotype frequencies in the population.

4. When genetic effects aim at providing a basis for the calculation of some statistical features of the
population (e.g. variance decomposition), they are determined according to some rules (e.g. indepen-
dence) which do not necessarily fit with the description of substitution effects.

There is no universally accepted terminology to describe these effect types. ’Physiological’ effects (or,
sometimes, ’compositional’, ’genetical’, ’biological’...) are associated to type 2, but they can probably fit
with the spirit of type 1 effects. ’Functional’ effects, most of the time used as a synonym of ’physiological’,
also frequently stands for type 3. Type 4 effects are generally called ’statistical’.

This complexity is also due to the fact that effect types can easily overlap. Type 3 effects measured in
a monomorphic population exactly correspond to type 1 effects. Moreover, type 4 effects exactly overlap
with type 3 effects in many situations (e.g. random mating populations), the difference between them being
of the same nature as the additive vs. average excess effects defined by Fisher.

3 The NOIA model

The Natural and Orthogonal InterAction model is a statistical framework aiming at unifying, extending and
simplifying existing models of genetic effects.

3.1 General framework

The formulation of the NOIA model relies on matrix algebra, and the notation here will follow (more or
less) the initial publication. The model proposes to manipulate and compute genetic effects in diploid,
diallelic populations, for any number of loci L. The two important vectors are Em, the vector of genetic
effects in the framework of the model m (remember, the genetic effects depend on the model in which
they are considered, including e.g. the background genotype), and G, the vector of genotypic values, both
of them being of length 3L. Genotypic values are constant and do not depend on any model, they are a
property of the genotype-phenotype map. For instance, for L = 1, Em = (Rm, am, dm) (Rm for the
reference point, am for the additive effect, dm for the dominance effect), and G = (Gaa, GAa, GAA) (the
three genotypic values). Em and G are linked by a 3L × 3L design matrix, Sm, which actually ’contains’
the description of the model. Computing the genetic effects from the genotypic values in the context of
model m is straightforward: G = SmEm, and the opposite operation is Em = S−1

m G. Combining the two
previous equations provide the ’change of reference’ operation, allowing to compute the genetic effects in
the framework of a model m2, given the genetic effects in a model m1: Em2 = S−1

m2
Sm1Em1 .

Details on how to build matrix Sm according to model m will not be detailed here, but an important
information is that it is easy to compute Sm for any number of loci from the one-locus Sm, assuming linkage
equilibrium. This simple algebra operations make thus possible to build models of arbitrary complexity.

4

3.2 Orthogonality

Orthogonalization of genetic models have been an objective of many quantitative geneticists since almost
a century. When an orthogonal model has to be used depends on the kind of inference one wants to draw
from the data, but it is doubtless that such a model would be of general interest for the scientific community.
An orthogonal decomposition of genetic effects have three major practical properties:

• It provides statistically independent (uncorrelated) genetic effects.

• It leads to a proper decomposition of genetic variance: the sum of variance components (var(A),
var(D), etc.) is exactly equal to the explained genetic variance, which is an expected result in quanti-
tative genetics.

• It makes model selection approaches much easier, since it is possible to remove effects without af-
fecting the others.

The NOIA model provides a matrix Snoia which always give orthogonal estimates Enoia in the one-
locus case, and multilocus orthogonal estimates if there is no linkage disequilibrium. Although this model
is still in developemnt (so far, linkage disequilibrium still breaks independence), this constitutes a step
forward towards an orthogonal decomposition of genetic effects

3.3 Least square regression

The equation Em = S−1
m G makes it possible to estimate genetic effects when genotypic values are known,

but this is not very common nor convenient. When a small amount of loci are considered, it is possible (but
not recommended) to calculate the average phenotypic value for each genotype, but this method will break
rapidly with the number of loci, since some genotypic combinations will be missing or estimated with a
large error due to a small sample size.

Instead, the NOIA framework proposes to estimate genetic effects by a least square regression, provided
that a set of individuals have been genotyped and phenotyped for loci of interest. If Y is the vector of phe-
notypes and Z is a matrix reflecting the genotype of each individual (details are provided in the publications
listed at the beginning of this tutorial), the vector of genetic effects can be estimated from the linear regres-
sion: Y = (ZSm)Em + e, where e denotes the vector of residuals. Genotypic values, as well as genetic
variances, can be easily calculated from E.

3.4 The multilinear model

The multilinear model of genetic interactions is not part of the NOIA model as such. Defined by T.F. Hansen
and G.P. Wagner in the early 1990s as a way to account for evolutionary-relevant genetic interactions, the
multilinear model constitutes an alternative to the usual decomposition of genetic variance in additive-by-
additive, additive-by-dominance, and dominance-by-dominance epistasis, which are easily defined statis-
tically, but remain difficult to interpret in terms of evolutionary consequences. Accessorily, Hansen &
Wagner’s model is the first individual-reference functional model of genetic effects.

Back to the haploid example: two loci with two alleles each, leading to four haploid genotypes: ab, Ab,
aB, and AB. The usual way to define genetic effects, setting arbitrarily the reference to ab, is to consider
two additive genetic effects (for the first locus, a1 is the phenotypic difference between Ab and ab, and
for the second locus, a2 is the difference between aB and ab). The phenotypic value of genotype AB is
then the reference, plus the two additive effects, plus an independent (additive by additive) epistatic term:
AB = R+a1+a2+aa (note that aa is a new genetic effect, not a multiplied by a — the historical notation
is somehow confusing).

The multilinear model is based on the assumption that genetic interactions scale with the additive effect
of allelic substitutions. The previous example, taken into the framework of the multilinear model, would
be AB = R + a1 + a2 + a1 · a2 · ε: the epistatic term scales with the product of additive effects, the
scaling factor, ε, describing the strength of epistasis. If ε = 0, there is no epistasis, if ε > 0, epistasis is

5

”positive”, i.e. the effect of substitutions amplify each other (the phenotypic value of a genotype combining
two substitutions will be higher than the sum of the two substitutions taken independently), and if ε < 0,
epistasis is ”negative”, i.e. the substitutions tend to cancel each other. As for all other genetic effects,
the value of this parameter depends on the genotype (or the mixture of genotypes) chosen as a reference.
Note that the concept of positive or negative epistasis strongly relies on the direction on which the trait is
considered: positive epistasis for e.g. body darkness is the same as negative epistasis for lightness.

The most detailed version of the multilinear model involves a parameter εij for each pair of loci i
and j. This setting can be cumbersome when many loci are involved, and it is possible to replace many
εij by a composite directional epistasis parameter, εc. This composite parameter describes the ’average’
directionality of the genotype-phenotype map, i.e. its general ’curvature’, which is known to have a direct
influence on the evolutionary properties of the population.

Extending the model for diploid populations, including dominance, is mathematically tractable, and
such a model can handle an infinite number of loci and alleles per locus. The theory also extends to
higher-order interactions, e.g. combining three substitutions at three different loci can be described by three
two-order epsilons and one third-order epsilon. The complexity of the model thus increases with the number
of loci. In the implementation described further, only diallelic models were considered, and the order of
epistasis was restricted to pairwise interactions for the multilinear model.

4 The noia package

The package noia for R contains a set of functions implementing the NOIA model and facilitating the
manipulation of genetic effects and genotype-phenotype maps. This tutorial will not attempt at providing a
comprehensive documentation on all functions (see the pdf documentation instead), but rather to present a
quick introduction to the main features of the program, and reproduce the steps that could be required for a
real-data analysis.

The most universal way to install the package is through the install.package() function:

> install.package("noia")

This will automatically download the official noia package from the CRAN web site (http:
//cran.r-project.org/) and install it. Alternative ways to install packages may exist through the
interface of R, different under each operating system.

Before use, it is necessary to load the package with:

> library("noia")

4.1 What the package can do

The package noia is primarily designed to analyze empirical data sets, but of course it is possible to run
it on simulated data for a more theoretical approach. In any case, the program needs to be fed with a
genotype-phenotype data set, including (i) a single phenotypic measurement for each individual, and (ii)
some information about the genotype of each individual of the experimental population, for a limited set of
loci known or suspected to be associated with the phenotype. Figure 1 summarizes the role which can be
played by this package when dissecting the genetic architecture of a particular trait.

There are many things that the package cannot do:

• The noia package is not a QTL mapping program. The genetic information has to be provided for
a limited, selected set of loci that are known to influence the phenotype. Typically, ’noia’ can be
used to analyze further the results of a QTL mapping experiment, once a set of major loci has been
identified.

• So far, the package can analyze only single traits.

6

Data

Phenotypes
Genotype at
neutral markers

Line cross
information

QTL mapping

Number of QTL

Genotypic probabilities
at QTL location

Genotype at
candidate loci

Raw estimates of
genetic effects

noia

Genetic variances Genotype-Phenotype map

Statistical genetic effects

Functional genetic effects Interpretation

Figure 1: Diagram representing the use of the noia package in the process of dissecting genetic architec-
tures. Genetic models implemented in the QTL mapping programs are in general not flexible nor precise
enough to address all kinds of questions, and the results provided by this package contribute to improve the
interpretation of raw QTL scans.

• So far, the package only considers diallelic loci. The theory for more than two alleles exists, but is
not implemented yet.

• So far, the package does not implement indicence matrices that maintain strict orthogonality despite
missing genotype information.

• Although the theory is designed to cope with any number of loci, the program will rapidly hit the
memory and/or computational limits of a regular desktop computer above 12-15 loci, depending on
the complexity of the models.

• Even if some effort has been made to clarify the documentation and make the functions easy to use,
the package is unable to teach quantitative genetics, nor it can run a meaningful analysis by itself.

• The package is not designed to be an introduction to R. Frequently, some little formatting work on the
data set or on results may be necessary, variables will need to be stored, some results might require
further analysis through statistical functions that are not provided along with the package. Basic
knowledge of the R syntax is therefore a prerequisite for a comfortable use of the ’noia’ package.

4.2 Data input

The package needs two pieces of data: (i) phenotypes and (ii) genotypes for each of the n individuals of an
experimental population. Phenotypes have to be stored as a vector of n numbers (which can be negative or
null). Note that the program will not complain if you enter binary traits (e. g. 0 and 1) or meristic traits
(e.g. number of eggs layed for 10 days), but just be sure of what you are doing: noia is built as a model for
quantitative, continuous characters. Missing values (NA) are allowed, individuals with missing phenotypes
are simply removed before the analysis (so don’t spend too much time with them). As a simple example,
let consider the following vector of phenotypes:

7

> phen <- c(10,12,9,7,11,16,10,11)

There are two ways to provide the genotypic data, one for perfect information, the gen method, (e.g.
genotypes at marker positions), and one for incomplete information, the genZ method (e.g. QTL peak
between two markers). These methods are alternative methods, i.e. they cannot be combined, but note that
genZ can always bring the same information as gen, although the contrary is not necessarily true.

The gen method is the simplest. A gen data set is a matrix of L columns and n lines, where L is the
number of loci and n is the number of individuals. The matrix can contain only three possible genotypes; 1
for the homozogote aa, 2 for the heterozygote aA, or 3 for the homozygote AA. Missing values (NA) are
allowed. The following matrix is an example of a 1-locus data set:

> genot1 <- as.matrix(c(1,2,1,3,2,2,3,NA))

A multilocus data set would be similar, with more than one column to the matrix.

The genZ method requires three columns per locus. The first column corresponds to the probability of
being of genotype aa, the second column of genotype aA, and the third column of genotype AA. If the
genotype is perfectly well known, then this probability will be 1 for this genotype, and 0 for the others. For
instance, the following genZ matrix is exactly identical to the previous gen example:

> genot2 <- matrix(c(
1, 0, 0,
0, 1, 0,
1, 0, 0,
0, 0, 1,
0, 1, 0,
0, 1, 0,
0, 0, 1,
2/7,3/7,2/7
),by.row=TRUE, ncol=3)

Note that the missing value was not coded as a probability of 0.333 of being of each genotype, but
rather used the estimated genotypic frequencies from other loci. This is the default behavior in the package,
because it does not affect genotypic frequencies. Since it is always possible to provide a genZ matrix
instead of gen, it is easy to code the missing values otherwise if the default behavior is not acceptable.

genZmatrices for L loci will have 3L columns, the three first ones being for locus 1, the three following
for locus 2, etc.

A direct interest of genZmatrices is to feed noiawith QTL genotypes when QTLs are located between
markers. In general, QTL mapping programs estimate genotypic probabilities between markers (interval
mapping), and can provide such estimates (most of the time calculated by a Haley-Knott regression, but
several alternatives exist). When these data are provided by two numbers, generally called a and d (their
meaning is totally unrelated to the additive and dominance effects), a simple way to convert them into
probabilities for the genZ matrix is: P(aa) = (1 − a − d)/2, P(aA) = d, P(AA) = a + (1 − a − d)/2.
Note that the whole process is completely symmetric, if aa and AA are reversed, all computed effects will
be of opposite sign, but the analysis will not be affected.

Obviously, it would be boring and time-consuming to type the data directly in R, and the easiest is to
import a file, and extract the phenotypic and genotypic data from it. Let’s consider the following file (text
format, tabulations between columns):

phen gen1 gen2 gen3
10.8 1 2 1
12.2 2 3 2
9.6 1 2 2
8.4 3 2 3
5.9 2 2 2

8

This file (named file.txt for the example) can be imported in R with the following command:

> data <- read.table("file.txt", header=TRUE)

The object data is a data frame, from which a phenotype vector can be extracted:

> phen <- data$phen

The same can be done for the genotype matrix:

> gen <- cbind(data$gen1, data$gen2, data$gen3)

4.3 Linear regression

The linear regression is the classical operation performed on genotype-phenotype data. The process consists
in estimating a vector of genetic effects Em through the least square regression Y = (ZSm)Em + e (see
the section about the NOIA model), Y being the vector of phenotypes, Z a matrix containing the genetic
information (note that Z is not gen nor genZ, but it is calculated from them), and Sm) a designed matrix
corresponding to model m. In the noia package, the default model considers the mean of the population
as a reference point (see the section about implemented models below).

This regression can be performed by the linearRegression() function, which takes at least two
parameters: a vector of phenotypes, and a matrix of genotypes (either of type gen or genZ, but not both).
A simplistic example inspired from the tiny data set already described above would be:

> phen <- c(10,12,9,7,11,16,10,11)
> genot1 <- as.matrix(c(1,2,1,3,2,2,3,NA))
> lr <- linearRegression(phen=phen, gen=genot1)

> lr

Phenotype:
n= 8 min: 7 max: 16 mean: 10.75

Genotype:
n= 8 , 1 loci

Locus 1 1: 0.286 2: 0.429 3: 0.286

Effects Variances Std.dev Pr(>|t|)
. 10.75000 0.00000 0.6905 1.986e-05 ***
a -0.50000 0.14286 0.9765 0.63044
d 4.00000 3.91837 1.4916 0.04374 *

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Variances
Total (phen) 6.7857
Residual 2.7245
Explained 4.0612 (59.8%)
Genetic 4.0612

The phenotype line provides a quick summary of the phenotypic data. Use it to make sure the program
understood the data correctly.

The genotype line summarizes the genotype matrix. It provides for each locus the frequency of every
genotype.

9

The following table below is probably the most important piece of information here. With one locus,
there are three genetic effects reported. The first one (.) is the reference point (here: the mean of the
population in the default model). The second line (a) is the additive effect, and the third line (d) is the
dominance effect. The Variances column corresponds to the part of genetic variance explained by each
effect (note that the variance of the reference point is meaningless). The Std.dev column is the standard
error of the estimates, which can easily be used to derive an approximate confidence interval, as estimate ±
1.96 SE. For instance, a good approximation of the confidence interval of the reference point is [9.4; 12.1].
The last two columns are provided as part of the standard R regression results (probability of being different
from 0), it mainly overlaps with the confidence intervals calculated before. It is important to note that
the ’statistical significance’ of genetic effects here are provided as an indication of the trust that can be
put in their values, but they should not be used as a basis to include or exclude loci that were considered
as significant by the QTL mapping process. QTL mapping methods are indeed much more powerful and
sophisticated than a single linear regression, and can account for e.g. multiple testing, which is not done
here.

Finally, the regression provides a short summary of the decomposition of genetic variances. The ex-
plained variance is the part of the variance attributed to genetic factors (here, the only locus included in
the analysis), calculated as the difference between the total variance and the residual variance. The genetic
variance is the sum of the variance explained by each genetic effect. Note that, depending on the version
of the package noia, the variances can be express either at population variances or as sample variances,
differing by a factor n/(n− 1), which should not make a large difference with large population sizes.

The full decomposition of genetic variance can be obtained through the function
varianceDecomposition():

> varianceDecomposition(lr)

Variance decomposition:
Total genetic variance: 4.0612
Order 1 Total: 4.06122 (100.0 %)

A 0.14286 (3.52 %)
D 3.91837 (96.5 %)

A corresponds to the additive variance, and D to the dominance variance, in phenotypic units (the unit
of variances being the square of the unit of phenotypic measure) and in percentage of the genetic variance.
If needed, the percentage of phenotypic variance can be easily calculated from the phenotypic variance
provided by the linearRegression() function.

There are two important features that can be noticed here: (i) the intercept of the regression (reference
point) is exactly equal to the mean phenotype (10.75) , and (ii) the sum of variance components is exactly
equal to the part of variance explained by the regression (4.06). These two observations are a consequence
of the fact that the model is perfectly orthogonal.

Considering more than one locus multiplies the number of effects, but the interpretation of the analysis
remains very similar. For instance, [samepage=true]

> phen2loc <- c(10,12,9,7,11,16,10,11,14,12,15,10)
> genot2loc <- cbind(c(1,3,2,1,2,2,1,2,3,2,3,3),
c(1,2,1,3,2,3,2,3,2,1,1,3))
> lr2 <- linearRegression(phen=phen2loc, gen=genot2loc)
Warning message:
In linearRegression(phen = phen2loc, gen = genot2loc) :

The decomposition of genetic effects is not orthogonal.

10

> lr2
Phenotype:

n= 12 min: 7 max: 16 mean: 11.417
Genotype:

n= 12 , 2 loci
Locus 1 1: 0.250 2: 0.417 3: 0.333
Locus 2 1: 0.333 2: 0.333 3: 0.333

Effects Variances Std.dev Pr(>|t|)
.. 11.3333333 0.0000000 0.7561 0.0006446 ***
a. 1.7831325 1.8326640 0.9827 0.1672193
d. 0.8333333 0.1673360 1.5411 0.6262555
.a -0.5833333 0.2268519 0.9081 0.5663535
aa -0.7108434 0.1707721 1.2629 0.6128392
da 3.5000000 2.1065709 1.7795 0.1438906
.d 0.1250000 0.0034722 1.6346 0.9438580
ad -0.3795181 0.0206715 1.9764 0.8599835
dd -2.0000000 0.1990936 3.4460 0.6023786

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Variances
Total (phen) 6.6288
Residual 1.7273
Explained 4.9015 (74%)
Genetic 4.7274

The code for genetic effects is straightforward: .. is the reference point, a. is the additive effect at
the first locus, .d is the dominance effect at the second locus, da is the dominance-by-additive effect, etc.
When more than two loci are involved, higher-order effects are built on the same principle, e.g. a.. is the
additive effect of locus 2 out of 4, and ..da is the dominance-by-additive effect between loci 3 and 4.

> varianceDecomposition(lr2)

Variance decomposition:
Total genetic variance: 4.7274
Order 1 Total: 2.23032 (47.2 %)

A 2.05952 (43.6 %)
D 0.17081 (3.61 %)

Order 2 Total: 2.49711 (52.8 %)
AA 0.17077 (3.61 %)
AD 2.12724 (45.0 %)
DD 0.19909 (4.21 %)

Each additional level of interactions generate new variance components (here, 3 second-order interac-
tion components A×A, A×D and D×D).

Note that, because of linkage disequilibrium between the two loci, the model is not orthogonal any
longer. This can be noticed by (i) the corresponding warning during the regression, (ii) the fact that the
reference point slightly differs from the mean phenotype, and (iii) the sum of the variance component is not
exactly equal to the total variance minus the residual variance (explained variance).

The function linearRegression() provides a number of options, which are detailed in the manual.
Among the most useful are those aiming at reducing the complexity of the model, max.level and max.dom.
max.level sets the maximum order of interactions that should be included in the model. If max.level=1,
only marginal effects (i.e. first order effects) will be calculated:

11

> lr2b <- linearRegression(phen=phen2loc, gen=genot2loc, max.level=1)
Warning message:
In linearRegression(phen = phen2loc, gen = genot2loc, max.level = 1) :

The decomposition of genetic effects is not orthogonal.

> lr2b

Phenotype:
n= 12 min: 7 max: 16 mean: 11.417

Genotype:
n= 12 , 2 loci
Locus 1 1: 0.250 2: 0.417 3: 0.333
Locus 2 1: 0.333 2: 0.333 3: 0.333

Effects Variances Std.dev Pr(>|t|)
.. 11.416667 0.000000 0.7468 1.235e-06 ***
a. 1.791924 1.850781 0.9964 0.1152
d. 0.986486 0.234495 1.5627 0.5479
.a -0.250000 0.041667 0.9147 0.7925
.d 0.283784 0.017896 1.6472 0.8681

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Variances
Total (phen) 6.6288
Residual 4.2592
Explained 2.3696 (35.7%)
Genetic 2.1448

Here all epistatic terms have been removed. The max.dom option works in a similar way, setting the
maximum level of dominance interactions ; max.dom=0 is allowed (no dominance at all). max.level
and max.dom can be combined.

Another important option is the reference= option, which defines the model that is used. The models
that are available in the software are the topic of the next section.

4.4 Genetic models

The package noia provides a predefined set of genetic models that can be used to perform the regressions
and to compute the variances. This section does not attempt at providing a full description of them, but
rather at introducing their main properties.

The default model is "noia". Although not perfectly orthogonal in multi-locus regressions, it provides
the best approximation to an orthogonal decomposition of genetic effects so far, and probably constitutes
the most logical choice for a statistical approach. The "G2A" model also targets orthogonality, but only
works in random-mating populations. At the opposite, three purely functional models are provided: "P1",
"P2" and "F1". The unweighted model, "UWR", has a particular status, since it was primarily defined
to compute genetic effects in a fixed mixture of genotypes (all at even frequencies). The two last models,
"Finf" and "F2", correspond to perfect F∞ and F2 populations, and might be of interest when analyzing
experimental populations through a breeding procedure expected to produce such patterns.

12

Model Code in noia Reference point Orthogonality
Parental 1 "P1" aa genotype at all loci never
Parental 2 "P2" AA genotype at all loci never
Hybrid F1 "F1" aA genotype at all loci never

Unweighted model "UWR" (Gaa + GaA + GAA/3) Not in any realistic pop.
F∞ "Finf" Mid point between aa and AA Only in perfect F∞

Intercross "F2" (Gaa + 2GaA + GAA)/4 Only in perfect F2

General-2-alleles "G2A" Gaa · p2 + 2GAa · pq + GAA · q2 Only if random-mating
NOIA "noia" Gaapaa + GaApaA + GAApAA Any population at linkage

equilibrium

Both genetic effects and variance decomposition are affected by the model. Note that reporting values
for genetic effects (e.g. a or d) as QTL mapping programs usually do is thus meaningless, except when
the model that was used is mentioned. Most of the time, this model is probably either Intercross (F2) or
Recombinant Inbred (F∞), i.e. they assume some structure a priori in the population; their accuracy thus
depends on the match between the expected structure and the actual population, including variation due to
sampling.

The computation of genetic effects obtained from one model into another one does not necessarily
involve a new regression. It can be achieved by the change of reference operation, implemented in the
function geneticEffects():

> geneticEffects(lr2, "P1")
Effects Std.dev

.. 10.0 2.607896
a. 2.5 1.737626
d. -2.0 2.619372
.a -1.5 1.852520
aa -0.5 1.267406
da 3.5 1.779513
.d 1.5 3.164502
ad -0.5 1.987244
dd -2.0 3.446012

> geneticEffects(lr2, "UWR")
Effects Std.dev

.. 11.1111111 0.7726609
a. 1.8333333 0.9870321
d. 0.8333333 1.5411035
.a -0.8333333 0.9276034
aa -0.5000000 1.2674056
da 3.5000000 1.7795130
.d 0.3333333 1.6708382
ad -0.5000000 1.9872443
dd -2.0000000 3.4460122

Although the interpretation of genetic effects is not particularly easy, especially between models, some
general directions can be provided. If, for a given locus, a=+1g in the "P1" model, this means that substi-
tuting an allele A instead of a at locus 1 has an average effect of +1g when all other loci are of genotype
aa. If the additive effect at the same locus is +2g in the "P2" model, this means that the very same allelic
substitution increases the phenotype by 2g when all other loci are AA. This is some clear evidence for
epistasis, since the effect of a substitution changes depending on the genetic background.

If the dominance variance measured in the default "noia" model is 12g2, and the population was gen-
erated by an intercross, one would expect a somehow similar value in the F2 model. the value obtained by an
"F2" regression being e.g. 11g2. This means that the dominance variance, given the genotype-phenotype

13

relationship estimated from the sample, would be 11g2 if the sample was a perfect F2 population. The
difference is thus due to the fact that the actual experimental population is not a perfect F2, either because
of sampling effect (a finite population will likely miss the perfect 1/4, 1/2, 1/4 expected proportions) or
because of alternative mechanisms (meiotic drive, non-random mating...).

4.5 Genotype-phenotype map

A part of the complexity associated with the analysis of genetic effects (as provided by a QTL mapping
routine, or from a noia regression) is due to the impact of the underlying model on the effect estimates.
Nevertheless, even if different models provide different sets of genetic effects, all of them rely on the
same genotype-phenotype relationship. The genotype-phenotype map is thus the common currency to
translate estimates into each other, and contains by itself useful hints to understand the consequences of
e.g. dominance or epistasis on the relationships between genotypes. The genotype-phenotype map can be
obtained by the GPmap() function:

> GPmap(lr)
G.val std.err

1 9.535714 1.356109
2 13.035714 1.096958
3 8.535714 1.356109

The first column indicates all possible genotypes (1, 2 and 3 only for one locus, with the same code as
for the gen matrix, i.e. 1 for aa, 2 for aA, and 3 for AA), G.val gives the estimate of the genotypic value,
and std.err the standard error of this estimate. As for the genetic effects, a good approximation of the
confidence interval can be obtained as estimate ± 1.96 std.err.

With more than one locus, the result is similar, but more combinations are generated:

> GPmap(lr2)
G.val std.err

11 10.0 2.607896
21 10.5 2.002187
31 15.0 2.259604
12 10.0 2.589849
22 11.0 2.082658
32 13.0 2.242580
13 7.0 2.607896
23 13.5 2.002187
33 10.0 2.259604

Genotypes have to be understood as e.g. ”31: genotype 3 at locus 1, genotype 1 at locus 2”. With more
than a few loci, the size of the G-P map becomes rapidly very large.

A particularly interesting application of the genotype-phenotype map production is to obtain altered
G-P maps, e.g. without dominance or without some epistatic components, by computing the G-P map from
a regression making use of the options max.level or max.dom.

4.6 Multilinear regression

The multilinear model, as described in the Model section, is an alternative way to describe and
quantify epistasis. The regression is based on the same principles as for the regular genetic ef-
fects regression, but assumes that genetic interactions scale with the additive effects of the loci. The
multilinearRegression() function is very similar to the linearRegression() routine, even
if the underlying mechanisms are quite different. In particular, the non-linear regression routine can fail,
because of a particularly tricky data set, too many loci, or bad automatically calculated starting values. In
particular, applying the multilinear regression to large data sets (more than 3 or 4 loci) can be quite tricky.

14

> lr2m <- multilinearRegression(phen=phen2loc, gen=genot2loc,
control=nls.control(maxiter=2000))
Warning message:
In linearRegression(phen = phen, genZ = genZ, reference = reference, :

The decomposition of genetic effects is not orthogonal.

> lr2m

Phenotype:
n= 12 min: 7 max: 16 mean: 11.417

Genotype:
n= 12 , 2 loci
Locus 1 1: 0.250 2: 0.417 3: 0.333
Locus 2 1: 0.333 2: 0.333 3: 0.333

Effects Variances Std.dev Pr(>|t|)
.. 11.288505 NA 0.7824 6.945e-06 ***
a. 0.022456 NA 0.3384 0.9493
d. 0.983043 NA 1.5641 0.5528
.a -0.539024 NA 0.8973 0.5700
.d 0.403655 NA 0.7635 0.6160
ee -6.340402 NA 15.2500 0.6920

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Variances
Total (phen) 6.6288
Residual 3.4956
Explained 3.1332 (47.3%)
Genetic 0

Note that an additional option was used (control=nls.control(maxiter=2000)) in order to
increase the number of steps in the non-linear least squares (nls) routine, the default (50 steps) being often
too small. The output is very similar to the result of a linearRegression function, except that no
variance components are provided. The directionality parameter (ε) is represented by the code ee. When
more than two loci are involved, ee. represents the ε between loci 1 and 2, e.e between loci 1 and 3, etc.

Here, the estimated value for the directionality parameter is negative (-6.34), which suggests a negative
curvature of the genotype-phenotype map: when combining substitutions of positive impact on the trait,
effects trend to cancel each other and the resulting phenotype will be less than expected under a purely
additive model. Note that the standard error that is reported by the multilinear regression routine is more
difficult to interpret than in the linear case, since it stands not only for the expected departure from the
’true’ model because of sampling and measurement error, but also from the departure between the ’true’
genotype-phenotype map and the multilinear model if the real map is not perfctly multilinear, which is
likely to happen.

The varianceDecomposition() operation cannot be applied to the result of a multilinear regres-
sion. It is however possible to get the estimated genotype-phenotype map:

15

> GPmap(lr2m)
G.val std.err

11 12.472234 14.006417
21 10.806468 15.862543
31 12.216670 10.688046
12 11.909367 7.319005
22 11.157437 8.285559
32 11.794005 5.601816
13 7.989668 14.006417
23 13.601516 15.862543
33 8.850643 10.688046

Note that the standard errors of estimates are given for information, but they are not accurate: they
are calculated under somehow unrealistic assumptions (independence of genetic effects). The multilinear
model has less parameters than the full linear genetic models, and the estimated genotype-phenotype map
will thus be different.

There are ways to perform a ”change of reference” operation in the multilinear framework, but they
are not implemented in the package (the function geneticEffects() does not work). However, a new
regression from a different reference point will provide the expected result.

5 Getting involved

5.1 Questions and bug reports

General questions about R and the base packages can be asked on various mailing lists, such as R-help
(https://stat.ethz.ch/mailman/listinfo/r-help.

Specific questions about the NOIA model and its applications to data should be sent to the corresponding
authors of the papers cited in the introduction.

Questions, bug reports, and suggestions about the noia package, the implementation of the functions,
and the official documentation should be sent to the official maintainers of the package (type ?noia in R
after having loaded the noia package).

Remarks or comments about this tutorial should be sent to the author, Arnaud Le Rouzic <lerouzic@
legs.cnrs-gif.fr>.

5.2 Contribution

The noia package is released under a free (GLP-2) license and it is possible to install, study, execute,
modify and publish the modifications as long as the GPL-2 license is respected (in brief: cite the authors
and keep the license unchanged in the modified versions, read the full conditions for more details http:
//www.gnu.org/licenses/gpl-2.0.html).

Contributions, in terms of suggestions, bug reports, bug fixes, and new features are welcome. Note that
the patches will of course be reviewed and may not be included in the main project if problematic or too far
from the original objectives of the package.

Acknowledgements

Many thanks to José Álvarez-Castro for his remarks and suggestions on this tutorial. I am grateful to Arne
Gjuvsland for his contribution to the code, and many users for their remarks and bug reports, including
Mihaela Pavlicev, Fran cois Besnier, and Jon Olav Vik. In addition to all these people, Örjan Carlborg and
Thomas Hansen are acknowledged for support and helpful discussion.

16

