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Invertebrates have contributed greatly to our understanding of associative learning because they allow learning protocols to
be combined with experimental access to the nervous system. The honeybee Apis mellifera constitutes a standard model for
the study of appetitive learning and memory since it was shown, almost a century ago, that bees learn to associate different
sensory cues with a reward of sugar solution. However, up to now, no study has explored aversive learning in bees in such
a way that simultaneous access to its neural bases is granted. Using odorants paired with electric shocks, we conditioned the
sting extension reflex, which is exhibited by harnessed bees when subjected to a noxious stimulation. We show that this
response can be conditioned so that bees learn to extend their sting in response to the odorant previously punished. Bees also
learn to extend the proboscis to one odorant paired with sugar solution and the sting to a different odorant paired with
electric shock, thus showing that they can master both appetitive and aversive associations simultaneously. Responding to the
appropriate odorant with the appropriate response is possible because two different biogenic amines, octopamine and
dopamine subserve appetitive and aversive reinforcement, respectively. While octopamine has been previously shown to
substitute for appetitive reinforcement, we demonstrate that blocking of dopaminergic, but not octopaminergic, receptors
suppresses aversive learning. Therefore, aversive learning in honeybees can now be accessed both at the behavioral and
neural levels, thus opening new research avenues for understanding basic mechanisms of learning and memory.
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INTRODUCTION
Associative learning allows extracting the logical structure of the

world as it enables making predictions about stimuli and their

potential outcomes. Honeybees (Apis mellifera) constitute a tradi-

tional invertebrate model for the study of associative learning at

the behavioral, cellular and molecular levels [1–4]. For almost

a century, research on honeybee learning and memory has made

significant contributions to our general understanding of these

processes, but it has focused so far on a single form of learning:

appetitive learning, in which bees are rewarded with sucrose on

particular stimuli or for performing a given behavior [5]. Since

Karl von Frisch, who first discovered the immense potential of this

appetitive behavior [6], researchers interested in bee learning have

concentrated on appetitive learning. Indeed, a single Pavlovian

protocol, the olfactory conditioning of the proboscis extension

reflex (PER) [7,8], has been used for 45 years as the unique tool to

access the neural and molecular bases of learning in honeybees.

This protocol relies on PER, the appetitive reflex exhibited by

a harnessed honeybee to a sugar reward (the unconditioned

stimulus or US) delivered to its antennae and mouth parts. After

pairing odorant (the conditioned stimulus or CS) and sucrose

presentations, the bee learns to associate odorant and sugar reward

and therefore extends its proboscis in response to the odorant

alone [7,8].

In contrast, in the fruit fly Drosophila melanogaster, the other insect

model ubiquitously used in this research field [9–11], aversive

learning has been the dominant framework. Olfactory learning in

fruit flies is generally studied by training flies to avoid an odorant

associated with an electric shock in a T-maze [12]. Due to obvious

differences in behavioral and motivational contexts, and to the

impossibility to equate US nature and strength, caution is needed

when comparing appetitive and aversive learning in bees and flies,

respectively.

To facilitate such a comparison, we studied aversive learning in

honeybees and established a new conditioning protocol for

honeybees using the sting extension reflex (SER), which is

a defensive response to potentially noxious stimuli [13]. As no

appetitive responses are involved in this behavioral context, true

aversive learning could be studied in harnessed honeybees. Using

odorants paired with electric shocks, we conditioned the SER so

that bees learned to extend their sting in response to odorants

previously punished. They could also learn to master simulta-

neously appetitive and aversive associations and exhibited the

appropriate response, PER or SER, to the appropriate odorant.

We show that aversive learning in honeybees is mediated by

dopamine and not by octopamine, which mediates appetitive

learning. Our work allows, therefore, accessing for the first time

aversive learning in honeybees, both at the behavioral and neural

levels.

RESULTS
Honeybees were fixed individually on a metallic holder so that

they built a bridge between two brass plates through which a 2 sec

mild electric shock (7.5 V) was delivered by a stimulator (60 Hz-

AC current) (Fig. 1). Bees treated in this way extend their sting in
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response to the electric shock. This reflex has been previously

studied [14–17] but so far no study attempted to condition it. The

sting extension reflex was rated with a 1 when the sting was visible

between the sternal and tergal plaques of the seventh abdominal

segment during the 2-sec shock. Absence of response was scored as

0. The intensity of the electric stimulation chosen ensures a reliable

unconditioned reaction without physical injury despite repetitive

stimulation (see below).

To determine whether SER can be conditioned using olfactory

stimuli, we trained bees with 6 explicitly paired presentations of an

odorant and the electric shock. The interstimulus interval (interval

between odorant and shock onset) was 3 sec and the intertrial

interval was 10 min. We compared the performance of these bees

to that of bees trained with explicitly unpaired presentations of

odorant and shock. Bees of the unpaired group experienced 6

odorant and 6 shock presentations that were temporally

dissociated. In all cases we recorded SER to the odorant. Each

group was subdivided into two subgroups trained either with 1-

hexanol or with eugenol. One hour after the last trial bees were

presented with the conditioned odorant alone in a retention test.

The two paired subgroups (1-hexanol, eugenol) did not differ

significantly and were therefore pooled, as were the two unpaired

subgroups. Over successive trials, bees from the paired group

(n = 38) significantly increased their response to the odorant that

preceded the electric shock (Fig. 2a; ANOVA for repeated

measurements: F5,190 = 8.46, p,0.0001). Bees in the unpaired

Figure 1. View of a honeybee in the experimental set-up. The bee is fixed between two brass plates (E1, E2) set on a plexiglas plate (pp), with EEG
cream smeared on the two notches (N1, N2) to ensure good contact between the plates and the bee, and a girdle (G) that clamped the thorax to
restrain mobility. The bee closes a circuit and receives a mild electric shock (7.5V) which induces the sting extension reflex (SER). An originally neutral
odorant is delivered through a 20 ml syringe (S) placed 1cm from the antennae. Odorant stimulation lasted 5 sec. The electric shock started 3 sec
after odorant onset and lasted 2 sec so that it ended with odorant offset. Contamination with remains of odorants used for conditioning or
pheromones is avoided via an air extractor (AE) which is on continuously.
doi:10.1371/journal.pone.0000288.g001

Figure 2. Associative olfactory conditioning of the sting extension reflex (SER) in honeybees. a) Responses (SER) of bees trained with an odorant
explicitly paired with an electric shock (black squares; n = 38) and with odorant and unpaired electric shock (white squares; n = 39) during 6 trials. Only
the bees in the paired group learned the association and extended their sting as a response to the odorant. One hour after conditioning an olfactory
aversive memory was present in the paired (black bar), but not in the unpaired, group (white bar). b) Responses (SER) of bees (n = 48) trained to
discriminate an odorant reinforced with an electric shock (black squares) and a non-reinforced odorant (white squares) during 12 trials (6 reinforced
and 6 non-reinforced). Bees learned to discriminate between odorants as a result of conditioning. *: p,0.0001.
doi:10.1371/journal.pone.0000288.g002
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group (n = 39) showed no significant change in responsiveness to

the unpaired odorant (F5,185 = 2.19, NS) during trials, thus

demonstrating that the increase in SER observed in the paired

group was due to associative learning and not to the simple

experience with the odorant and the shock, independent of their

temporal sequence. The performance of both groups differed

significantly over all trials (F1,75 = 18.35, p,0.0001) and the

evolution of responses during trials was also different between

groups, as shown by the significant interaction (F5,375 = 9.79,

p,0.0001). One hour after conditioning, bees of the paired group

still remembered the conditioned odorant while bees of the

unpaired did not respond to the odorant (Fig. 2a, black and white

bars, respectively; Fisher’s exact test; p,0.0001). An aversive

memory was therefore established in the paired but not in the

unpaired group.

To confirm the associative nature of this learning, we trained

bees to extend their sting to an odorant paired with an electric

shock and not to respond to a non-reinforced odorant (differential

conditioning). This procedure is a typical within-subject control in

studies of associative learning. Bees were conditioned during 6

reinforced and 6 non-reinforced trials, presented in a pseudo-

random sequence with 10 min inter-trial intervals. For one group

of bees, eugenol was the reinforced odorant and 1-hexanol the

non-reinforced odorant; for a second group the contingencies were

inversed. Because there were no significant differences between

both groups, data were pooled (n = 48). The resulting learning

curves (Fig. 2b) show that bees learned to discriminate between

odorants as a result of conditioning (F1,94 = 27.05, p,0.0001).

Thus, olfactory conditioning of SER is truly associative and does

not depend on the simple exposure to the training stimuli,

independent of their outcome.

We then asked whether or not appetitive and aversive olfactory

learning can be mastered simultaneously by honeybees. We

trained bees to discriminate 1-hexanol and 1-nonanol, one of

which was paired with electric shock during 6 trials and the other

with sucrose solution 50% (weight/weight) also during 6 trials

(SER-PER group). Trials were spaced by 10 min and odorants

were presented in a pseudo-random sequence. Data from both

conditioned groups (1-hexanol/shock vs. 1-nonanol/sucrose and

1-hexanol/sucrose vs. 1-nonanol/shock) could be pooled (n = 80).

The resulting performance is presented in Fig. 3a,b. Bees

responded significantly with a SER to the odorant associated with

the electric shock but not to that associated with sucrose (Fig. 3a:

F1,158 = 27.33, p,0.0001) whereas they responded significantly

Figure 3. Simultaneous aversive and appetitive learning in honeybees. The same group of bees (SER-PER group; n = 80) was trained in a double
discrimination task with an odorant (‘A’) paired with an electric shock that elicited the sting extension reflex (SER) and with another odorant (‘B’)
paired with sucrose solution delivered to the antennae and proboscis that elicited the proboscis extension reflex (PER). a) Bees responded
significantly with a SER to the odorant associated with the electric shock (black dots and bar), but not to that associated with sucrose (white dots and
bar). b) The same bees responded significantly with a PER to the odorant associated with sucrose (white dots and bar), but not to that associated with
electric shock (black dots and bar). One hour after the last conditioning trial, bees still responded correctly to the odorants (bars), even if their
respective USs were absent in the tests. As a result of training, bees exhibited the appropriate response to the appropriate odorant. Appetitive and
aversive learning can thus be mastered simultaneously. c,d: Control groups trained to discriminate odorants A and B, one of which was non-
reinforced and the other reinforced either with electric shock (c: SER group; n = 80) or with sucrose solution (d: PER group; n = 80). c) Bees responded
significantly with a SER to the odorant associated with the electric shock (black squares and bar), but not to the non-reinforced odorant (grey squares
and bar). The performance of this group did not differ from that of the SER-PER group [compare with a)]. d) Bees responded significantly with a PER
to the odorant associated with the sucrose solution (white squares and bar), but not to the non-reinforced odorant (grey squares and bar). The
performance of this group was significantly better than that of the SER-PER group [compare with b)]. *: p,0.0001.
doi:10.1371/journal.pone.0000288.g003
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with a PER to the odorant associated with sucrose but not to that

associated with electric shock (Fig. 3b: F1,158 = 40.89, p,0.0001).

As a result of training, they exhibited the appropriate response to

the appropriate odorant. One hour after the last conditioning trial,

bees still responded correctly to the odorants even in the absence

of punishment or reward (McNemar test; SER: x2 = 42.00;

p,0.0001; PER: x2 = 37.21; p,0.0001).

To show that bees did indeed learn to master both appetitive

and aversive associations simultaneously, we focused on individual

performances and quantified the number of bees responding

correctly to both the aversive and the appetitive odorants

(‘doubles’), to the appetitive odorant alone (‘PER only’) and to

the aversive odorant alone (‘SER only’). As bees were naı̈ve for

both odorants in the first trial, we included only responses from

trial 2 to 6 in our analysis. Only the number of bees responding

correctly to the aversive and to the appetitive odorant (‘doubles’)

increased significantly from trial 2 to 6 (from 2.5 to 13.75%;

F4,316 = 4.42; p,0.05). Neither the number of bees responding

correctly only to the odorant paired with sucrose (‘PER only’: from

18.75 to 28.75%; F4,316 = 1.73; NS) nor the number of bees

responding correctly only to the odorant paired with electric shock

(‘SER only’: from 25 to 17.5%; F4,316 = 1.34; NS) varied

significantly. For these bees, ‘PER only’ and ‘SER only’, the

significant increase occurred between the first and second trial.

Thus, at the end of conditioning, 13.75% of bees (11 out of 80

bees) mastered both associations. In the retention tests, the

proportion of ‘doubles’ responding correctly to both the aversive

and the appetitive odorant was even higher (30%; 24 out of 80

bees), thus suggesting that additional trials and/or time improves

the performance of bees in this double task. The proportion of

‘PER only’ bees in the retention test was 23.75% (19 out of 80

bees) and that of ‘SER only’ bees 27.5% (22 out of 80 bees).

In parallel to the double-task discrimination shown in Fig. 3a,b

we trained two groups of bees to discriminate the same odorants,

1-hexanol and 1-nonanol, either in the SER (Fig. 3c) or in the

PER protocol (Fig. 3d). These groups had to learn a single

discrimination task, aversive or appetitive, and were conceived to

estimate whether mastering of both appetitive and aversive

associations resulted in an impaired performance in either

discrimination. In the SER group, one odorant was associated

with electric shock during 6 trials while the other was presented

without punishment during 6 trials. In the PER group, bees were

fixed in the same holders used for SER conditioning and they

experienced one odorant associated with sucrose solution during 6

trials and another non-rewarded odorant during 6 trials. For each

group, odorants were balanced and data from bees trained with 1-

hexanol and 1-nonanol could be pooled (PER group: n = 80; SER

group: n = 80). Trials were spaced by 10 min and odorants were

presented in a pseudo-random sequence as in the group that

learned both associations simultaneously. As shown previously (see

Fig. 2b), bees learned to discriminate one odorant reinforced with

electric shock from an unpunished odorant so that they extended

their sting to the reinforced but not to the non-reinforced odorant

(Fig. 3c: F1,158 = 31.41, p,0.0001). Similarly, bees learned to

discriminate one odorant rewarded with sucrose solution from

a non-rewarded odorant so that they extended their proboscis to

the rewarded but not to the non-rewarded odorant (Fig. 3d:

F1,158 = 128.08, p,0.0001). One hour after the last conditioning

trial, bees in each group responded correctly to the odorants even

in the absence of punishment (SER group: x2 = 36.54, p,0.0001)

or of reward (PER group: x2 = 55.02, p,0.0001). We then

compared the performance of these groups (Fig. 3c,d) to that of the

SER-PER group trained in parallel with both aversive and

appetitive USs (Fig 3a,b). Learning both aversive and appetitive

associations did not affect aversive SER conditioning as the level of

SER responses was identical for the SER-PER group (Fig. 3a) and

the SER group (Fig. 3c), both for acquisition (F1,306 = 0.31, NS)

and retention (Mann-Whitney test performed on the difference

between responses to test odorants: Z = 0.12, NS). However,

learning both associations resulted in a lower performance for

appetitive PER conditioning. Bees in the SER-PER group reached

lower levels of PER acquisition and retention compared to the

PER group which did not experience electric shocks (acquisition:

F1,316 = 7.10, p,0.01; retention: Z = 2.48, p,0.02). Although

aversive learning seems to interfere with appetitive learning, lower

PER performances in the SER-PER group may simply result from

having experienced six electric shocks that would lower the general

responsiveness of the bees without implying necessarily interfer-

ences between different forms of associative learning.

To test this hypothesis we performed an additional control

experiment in which we explicitly tested the effect of the electric

shock on appetitive PER conditioning. We trained bees to respond

to an odorant, either 1-hexanol or 1-nonanol, paired with sucrose

solution, and interspersed the shock alone during training. Thus,

bees experienced six paired presentations of odorant and sugar

reward and six electric shocks following the same pseudorandom

sequence as in the previous experiments (‘shock group’). In

a parallel group, the same procedure was followed but the shock

was substituted by a placement trial in which bees were simply

placed in the conditioning setup without receiving any punishment

(‘placement group’). One hour after training, bees of both groups

were presented in a retention test with the trained odorant and

with a novel odorant (1-hexanol for bees trained with 1-nonanol

and vice versa) in order to assess the specificity of olfactory

memory. As in the previous experiments, trials were spaced by

10 min. The odorants, sucrose concentration and shock intensity

were the same as before.

For each group, ‘shock’ and ‘placement’, the two subgroups

conditioned to either 1-hexanol or 1-nonanol yielded similar

results and were therefore pooled (group shock: n = 40; group

placement: n = 40). Both groups of bees learned to respond to the

rewarded odorant during training, irrespective of the presence or

absence of electric shocks during conditioning (Fig. 4;

F5,390 = 33.18, p,0.0001). The acquisition was similar in both

groups (F1,78 = 0.20, NS) and no significant interaction was found

(F5,390 = 0.36, NS). During the retention test, bees of both groups

behaved similarly (Z = 0.47, NS) as they responded significantly

more to the learned odorant than to the novel odorant (x2 = 39.20;

p,0.0001), thus showing that the shocks experienced during

training did not affect the appetitive memory one hour after

conditioning. These results show, therefore, that the electric shock

did not interfere with appetitive olfactory learning. We conclude

from these experiments, that while the formation of an appetitive

association does not interfere with aversive conditioning, the

formation of an aversive odorant-shock association (and not the shock

alone) induces a performance decrease during appetitive condi-

tioning. However, the fact that some bees manage to learn both

associations simultaneously supports the notion that appetitive and

aversive olfactory learning are mediated by relatively independent

neural systems (also termed ‘modules’) dedicated to the processing

of appetitive and aversive associations.

Looking at the neural bases of appetitive and aversive olfactory

learning and studying whether the appetitive and aversive

unconditioned stimuli used are mediated by different neurotrans-

mitters may help elucidate the relative independence of appetitive

and aversive modules. We took advantage of the fact that in our

aversive learning protocol bees are immobilized, thus allowing

simultaneous access to behavioral performances and to the

Aversive Learning in Honeybees
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nervous system. We tested whether octopamine and dopamine,

two catecholamines that have been related respectively to appeti-

tive and aversive olfactory learning in fruit flies [18,19] and

crickets [20] are required for olfactory aversive learning in

honeybees. In honeybees, octopamine mediates sucrose reward

in olfactory appetitive learning [21,22] but nothing was known

about aversive learning because the possibility of studying aversive

learning at the neural level was so far unavailable. Ringer solution

(control), octopaminergic (mianserine 0.33 mM or 3.3 mM,

epinastine 4 mM) or dopaminergic receptor antagonists (fluphen-

azine 0.19 mM or 1.9 mM, flupentixol 0.2 mM or 2 mM) were

injected (10620 nl in all cases) into the brain through the median

ocellar tract 30 min before conditioning. We then trained bees to

discriminate 1-hexanol and eugenol using the differential condi-

tioning procedure described above (see Figs. 2b and 3c). Ringer

controls did neither differ for acquisition (Kruskal-Wallis test:

H2,104 = 8.48; NS) nor for retention (H2, 102 = 2.30; NS). We

therefore analyzed the performance of drug-injected groups and

compared it to that of Ringer-injected groups.

Ringer-injected bees learned to discriminate the reinforced from

the non-reinforced odorant (see performance of one of the three

Ringer controls in Fig. 5a: F1,39 = 67.49, p,0.0001). One hour

later, they still remembered the aversive association and extended

their sting in response to the previously punished odorant

(McNemar Test: x2 = 9.09, p,0.01). Octopaminergic antagonists

(mianserine or epinastine) did not affect performance at any of the

concentrations used in these experiments (Fig. 6). Similarly to

Ringer-injected bees, mianserine-and epinastine-injected bees

learned to discriminate the two odorants and responded with

SER only to the odorant paired with the electric shock (mianserine

0.33 mM: F1,39 = 27.42, p,0.0001; mianserine 3.3 mM: F1,39 =

60.14, p,0.0001; epinastine 4 mM: F1,23 = 50.76, p,0.0001).

Retention tests also showed significant discrimination (mianserine

0.33 mM: x2 = 7.58, p,0.01; mianserine 3.3 mM: x2 = 12.04,

p,0.001; epinastine 4 mM: x2 = 12.07, p,0.001). An apparent

increase of retention was found in bees injected with epinastine

with respect to Ringer-injected bees (see light blue row in Fig. 6)

but this effect was due to the poor performance of Ringer-injected

bees rather than to epinastine itself. Figure 5b shows as example

the performance of bees injected with mianserine 3.3 mM, which

learned to discriminate the punished from the non-punished

odorant and remembered the difference one hour later. Thus,

octopaminergic antagonists did not impair aversive olfactory

learning in honeybees.

Dopaminergic antagonists (fluphenazine and flupentixol) had

a dramatic effect on aversive olfactory learning. For both

concentrations of flupentixol tested, and contrarily to controls,

bees did not learn to discriminate between odorants (flupentixol

Figure 4. The effect of electric shock on appetitive olfactory
conditioning of the proboscis extension reflex (PER). Responses (PER)
of bees trained to associate an odorant with sucrose solution along six
conditioning trials and experiencing six electric shocks (‘shock group’;
black dots and bars; n = 40) or six placements in the conditioning setup
(‘placement group’; white dots and bars; n = 40) interspersed pseudor-
andomly. Bees in both groups learned to respond to the rewarded
odorant irrespective of the presence or absence of shock. One hour
later, both groups behaved similarly in the retention test (bars) and
responded significantly more to the conditioned odorant than to the
novel odorant. Thus, repetitive stimulation with the electric shock did
neither affect appetitive olfactory learning nor olfactory memory one
hour after conditioning. *: p,0.0001.
doi:10.1371/journal.pone.0000288.g004

Figure 5. The effect of octopaminergic and dopaminergic receptor antagonists on olfactory conditioning of the sting extension reflex (SER).
Responses (SER) of bees trained to discriminate an odorant reinforced with an electric shock (black squares) and a non-reinforced odorant (white
squares) during 12 acquisition trials (6 reinforced and 6 non-reinforced). A retention test was conducted 1 h after the last acquisition trial (black bar:
odorant previously reinforced; white bar: odorant previously non-reinforced). a) Responses (SER) of control bees injected with Ringer into the brain
(n = 40); b) Responses (SER) of bees injected with the octopaminergic antagonist mianserine 3.3 mM into the brain (n = 40); c) Responses (SER) of bees
injected with the dopaminergic antagonist flupentixol 2 mM into the brain (n = 40). Ringer-and mianserine-injected bees learned to discriminate the
reinforced from the non-reinforced odorant and remembered the difference one hour later. Flupentixol-injected bees did not learn to discriminate
the reinforced from the non-reinforced odorant, nor did they respond appropriately in the retention tests. Similar results were obtained with other
concentrations of octopaminergic and dopaminergic antagonists (see Fig. 6). These results show that dopamine, but not octopamine receptors are
required for aversive olfactory learning in honeybees.
doi:10.1371/journal.pone.0000288.g005
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0.2 mM: F1,39 = 0.88, NS; flupentixol 2 mM: F1,39 = 0.78, NS).

Consequently, they did not show discrimination in the tests

performed one hour later (flupentixol 0.2 mM: x2 = 0.64, NS;

flupentixol 2 mM: x2 = 0.06; NS). As an example, Figure 5c

presents the performance of bees injected with flupentixol 2 mM,

which learned neither to discriminate the reinforced from the non-

reinforced odorant nor to respond appropriately in the retention

test. For fluphenazine, significant differences with the Ringer

control were found in two out of four comparisons (see Fig. 6) and

the alpha value of the two other comparisons was close to

significance. These results show therefore that dopamine-, but not

octopamine signaling, is necessary for aversive olfactory learning

in honeybees.

In vertebrates, dopaminergic receptors are generally classified in

two main families, the D1-like and D2-like receptors [23,24].

Activation of the D1-like family is coupled to increases in cAMP

concentration and is typically excitatory, while D2-like activation

reduces cAMP and is typically inhibitory. In the honeybee, three

different dopamine receptors have recently been identified:

AmDOP1 [25], AmDOP2 [26] and AmDOP3 [27]. AmDOP1

and AmDOP3 have been related to the vertebrate D1-like and D2-

like family of dopamine receptors, respectively [25,27]. AmDOP2

appears to be more closely related to invertebrate octopamine

receptors and constitutes therefore a distinct ‘invertebrate type’

dopamine receptor [26]. From a functional point of view,

however, it can be referred to as a ‘D1-like receptor’ because it

upregulates cAMP. Contrarily to vertebrates, no specific pharma-

cological blockers for D1-like and D2-like receptors are yet

available in insects. We nevertheless used vertebrate D1-like and

D2-like receptor blockers SCH23390 and spiperone, respectively,

to confirm that dopamine is necessary for aversive olfactory

learning in honeybees and to determine whether these drugs affect

differently acquisition and retention in our protocol. We followed

the procedure described above and injected either Ringer

(control), SCH23390 (1 mM and 3 mM) or spiperone (1 mM and

2.5 mM) into the brain. Results are given in Fig. 6. Ringer-

injected bees (n = 40) learned to discriminate the reinforced from

the non-reinforced odorant (F1,39 = 54.65, p,0.0001). One hour

later, they still remembered the difference (x2 = 10.56, p,0.005).

Figure 7a shows as example the performance of one of the two

Ringer control conditioned in parallel with the SCH23390 and the

spiperone groups.

SCH23390-injected bees failed to show evidence of acquisition

at the low dose (1 mM: F1,39 = 2.77, NS) but not at the high dose

(3 mM: F1,39 = 23.15, p,0.005) (n = 40 in both cases). SCH23390

had no effect on retention as bees responded significantly more to

the odorant previously paired with the electric shock and did not

differ from control bees (1 mM: x2 = 4.00, p,0.05; 3 mM:

x2 = 10.08, p,0.002). Figure 7b shows as example the perfor-

mance of the group injected with 3 mM of SCH23390. Taken

together, these results indicate that SCH23390 had a low

detrimental effect on aversive learning in bees.

By contrast, spiperone-injected bees were significantly impaired

in both learning and retention at both doses used (n = 40 in both

cases) as they did not learn the difference between reinforced and

non-reinforced odorants (1 mM: F1,39 = 2.75, NS; 2.5 mM:

F1,39 = 0.19, NS) nor did they show any retention one hour later

(1 mM: x2 = 0.50, NS; 2.5 mM: x2 = 2.90, NS). Figure 7c shows as

example the performance of the group injected with 2.5 mM of

spiperone. These results show that olfactory aversive learning is

differently affected by blockade by different dopaminergic ligands.

Although specific D1-like and D2-like dopamine receptor blockers

are still required for insects, our results suggest that AmDOP

receptors could contribute differently to aversive learning in bees.

DISCUSSION
The present work shows that harnessed bees learn to associate

odorants and electric shock in the laboratory and that it is possible

to access the bee brain while the animal learns and memorizes

aversive cues. Our protocol allows associative, aversive learning to

be studied at the individual level, in a framework that is distinct

from any appetitive behavior. Previous studies focused on

avoidance learning in foraging bees and preserved therefore an

appetitive framework [28–32]. In such studies, free-flying bees

Figure 6. The effect of different octopaminergic and dopaminergic antagonists on acquisition (differential conditioning with two odorants, one
reinforced and the other non-reinforced) and retention (memory test 1h after conditioning) of olfactory aversive learning in honeybees. Values
correspond to the mean6S.E of a discrimination index (responses to reinforced odorant–responses to non-reinforced odorant) in the last acquisition
trial and in the retention test. They are expressed in%. Sample sizes are indicated in parentheses. Colors correspond to the groups that were
performed in parallel. Groups sharing the same color share the same Ringer control. Pairwise comparisons between drug-and Ringer-injected
(control) groups were performed using a Mann-Whitney test. Z-adjusted values and significance level (p) are given for each comparison. NS: non-
significant; *: p,0.05 in blue row; *: p,0.0125 in yellow rows (a/4); *: p,0.008 in pink rows (a/6). ({): Significance in this case is due to an unusually
low performance in the control (Ringer-injected) group, and not to an incremental effect of epinastine.
doi:10.1371/journal.pone.0000288.g006
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foraging for food learned to avoid flower patches infested with

crab spiders [28,29] or artificial flowers penalized either with

quinine [30] or a puff of compressed air [31]. They also learned to

avoid landing on five out of six petals of a mechanical flower that

flicked forward and hit them upon landing [32]. Electric shock has

also been used, although seldom, to generate avoidance of visited

food sources in free-flying honeybees [33,34]. All these studies

have in common the impossibility of accessing the nervous system

in parallel to behavioral recording because they used free-flying

bees. Furthermore, they all maintain an appetitive framework as

they aim to inhibit the appetitive response of food search. The

appetitive framework is also present in a variant of olfactory PER

conditioning in which after pairing an odorant and sucrose, an

electric shock is delivered to the proboscis so that bees learn to

retract it in response to the odorant [35]. Our assay, in contrast,

precludes confounding appetitive responses and converges on

experimental conditioning procedures traditionally used for

Drosophila in which odorants are directly paired with electric shock

[12] without involving an appetitive context. In the fruit fly, this

assay led to significant progress in the study of learning and

memory and its importance has been underlined [36]. Our

procedure has, however, a significant advantage with respect to

olfactory conditioning in Drosophila as it does not contain orienting

or locomotion components, which could be interpreted as an

operant component in an otherwise classical conditioning

paradigm. We expect, therefore, that our assay will facilitate

new research and comparative studies on the neurobiology of

aversive learning and memory, which have up to now been

impossible in honeybees.

We showed that bees trained in a double discrimination task

(one odorant rewarded with sucrose solutions vs. a different

odorant punished with electric shock) learn to master both

appetitive and aversive olfactory learning simultaneously, so that

they exhibit the appropriate response, PER or SER, to the

appropriate odorant. Bees trained in such a way exhibit, however,

lower scores for appetitive learning than bees trained to

discriminate two odorants in the appetitive modality (one odorant

rewarded with sucrose solutions vs. a different odorant non-

rewarded). This difference was not due to a detrimental effect of

the electric shock as shown by the fact that appetitive olfactory

learning was unaffected by interspersing shocks among odorant-

sugar trials. The lower performance in appetitive conditioning

(PER) found in bees trained with the double discrimination task

(Fig 3b) could be due to the potential difficulty of actively

producing two different motor responses, PER and SER. Indeed,

in the PER-alone group (Fig 3d), bees only had to respond to

odorants with one response, PER. However, if this were the case, it

should have produced a similar detrimental effect onto SER

conditioning in the double discrimination group relative to the

SER-alone group, which only had to respond to odorants with one

response, SER. This was not the case. Thus, although the fact that

some bees manage to learn both tasks simultaneously underlines

the relative independence of aversive and appetitive olfactory

learning in honeybees, there seems to be a negative influence of

the formation of an odorant-shock association on simultaneous

appetitive conditioning. A possible explanation for this effect could

relate to a natural predisposition of the bee brain to give priority to

the aversive/defense system relative to the–less critical-appetitive

system in cases of threatening situations.

To determine whether the relative independence of appetitive

and aversive learning is supported by independent modules

corresponding to separate neural systems dedicated to the

processing of the different unconditioned stimuli, we took

advantage of the possibility of combining aversive conditioning

and neuropharmacological tools. Octopamine has been strongly

implicated in appetitive olfactory learning in bees and octopamine

injections in the brain can substitute for sucrose reward and induce

olfactory learning [21]. Blocking octopamine receptors by means

of RNAi techniques disrupts olfactory conditioning of PER [22].

In addition, we found that dopamine, but not octopamine,

underlies aversive olfactory learning, thus suggesting that dopa-

mine is linked to aversive learning across insect species [18–20].

Our results suggest that dopamine plays an instructive function in

aversive learning, possibly conveying information about punitive

stimuli. Dopaminergic neurons capable of mediating and predict-

ing aversive stimuli have been found in the Drosophila brain [37].

These neurons may be a general feature of the insect brain and

dopamine may underlie other forms of aversive learning involving

stimuli of different sensory modalities (e.g. visual stimuli associated

with aversive gustatory USs [38]). We suggest that the activity of

Figure 7. The effect of vertebrate D1-like and D2-like dopamine receptor antagonists on olfactory conditioning of the sting extension reflex (SER).
Responses (SER) of bees trained to discriminate an odorant reinforced with an electric shock (black squares) and a non-reinforced odorant (white
squares) during 12 acquisition trials (6 reinforced and 6 non-reinforced). A retention test was conducted 1 h after the last acquisition trial (black bar:
odorant previously reinforced; white bar: odorant previously non-reinforced). a) Responses (SER) of control bees injected with Ringer into the brain
(n = 40); b) Responses (SER) of bees injected with the D1-like dopamine receptor antagonist SCH23390 3 mM into the brain (n = 40). c) Responses
(SER) of bees injected with the D2-like dopamine receptor antagonist spiperone 2.5 mM into the brain (n = 40). Ringer-and SCH23390-injected bees
learned to discriminate the reinforced from the non-reinforced odorant and remembered the difference one hour later. Spiperone-injected bees did
not learn to discriminate the reinforced from the non-reinforced odorant, nor did they respond appropriately in the retention tests. These results
suggest that AmDOP receptors could contribute differently to aversive learning in bees.
doi:10.1371/journal.pone.0000288.g007
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modulatory, aminergic neurons serves, in the insect species tested

so far, as a value system in associative learning phenomena, i.e. as

a system allowing ordering, prioritizing and assigning appropriate

labels to learnt stimuli [39].

We also showed that differences in learning and retention can

be found on the basis of their susceptibility to blocking by

dopaminergic ligands. The ligands used are well-known vertebrate

D1-like and D2-like receptor antagonists. Although the specificity

of these antagonists is not granted for insect receptors, the fact that

the D1-like antagonist SCH23390 was less effective than the D2-

like antagonist spiperone, which suppressed aversive learning and

memory, raises the question of the differential involvement of

AmDOP receptors in aversive learning and memory in bees.

Studying these questions will require, however, the development of

specific pharmacological antagonists or the use of RNAi techni-

ques already applied successfully in honeybees [22].

For honeybees, stinging can eventually lead to death because

the sting may remain attached to the stung surface [13]. Neverthe-

less, we show here that the stinging response can be conditioned,

thus underlining the remarkable plasticity of the insect nervous

system. In a natural context, bees do not always die when they

sting an enemy, especially if it offers soft body mass and non-elastic

surfaces which allow the sting to retract [13]. This is the case for

predators like wasps and other insects, which commonly attack

hives and elicit defensive behavior without resulting in sting loss.

Olfactory discrimination is critical for enemy identification in

defending bees [13]. It may thus be adaptive to learn to recognize

predators and exhibit appropriate defensive behavior in an

aversive context.

Finally, we discuss the pertinence of the terminology used to

characterize our conditioning protocol. We have defined the

olfactory conditioning of the sting extension reflex as a case of

aversive learning. Contrarily to other cases of aversive learning,

however, the consequence of SER conditioning is neither an

avoidance response towards the stimulus (here a given odorant)

predicting the noxious unconditioned stimulus (here the shock) nor

a response inhibition. In traditional protocols of aversive learning,

individuals learn to actively avoid a noxious stimulus (e.g. fruit flies

trained to associate an odorant with an electric shock in a T-maze

actively avoid the arm of the maze presenting the odorant, which

was negatively reinforced [12]) or to inhibit a response when

confronted with a potentially harmful situation (e.g. mice trained

to associate a given context with an electric shock exhibit a freezing

response when replaced in the same context [40,41]). In SER

conditioning, bees learn to redirect an active response, stinging,

towards an originally neutral stimulus that predicts shock delivery.

This difference does not invalidate the term ‘aversive’ used to

characterize our protocol but underlines the importance of relating

responses to their biological background. In a natural context, bees

facing a potential danger are not supposed to escape but to attack.

In that sense the natural response to an aversive stimulus is

precisely what is recorded in our protocol. We thus maintain that,

independently of the fact that bees actively produce a response

instead of inhibiting it, SER conditioning is a case of true aversive

learning as it relies on the relevant, natural response to an aversive

stimulus.

MATERIALS AND METHODS

Olfactory conditioning of SER
Honeybees were captured at the entrance of an outdoor hive.

These individuals, which are usually older than 5–7 days, have

a fully developed sting reflex [15]. Bees were chilled on ice for

5 min until they stopped moving. Each bee was individually fixed

on a metal holder (Fig. 1) consisting of two brass plates (E1, E2)

fixed to a Plexiglas plate (pp). The bee’s petiole was tightly fitted

into the notch N2 and the neck into the notch N1. The elastic

girdle G clamped the thorax. Plates E1 and E2 were connected to

the output of the stimulator (60 Hz–AC current). Notches N1 and

N2 were smeared with an EEG gel (Spectra 360 Electrode Gel,

Parker Laboratories) to ensure good contact between the plates

and the bee. The resistance measured between E1 and E2 in the

presence of the bee was 200–300 KV. The aversive US was an

electric shock of 7.5 V applied for 2 sec. Five ml of pure odorants

(1-hexanol, eugenol and 1-nonanol, Sigma Aldrich, Deisenhofen,

Germany) were applied onto 1 cm2 filter paper pieces which were

transferred to 20 ml syringes allowing odorant delivery to the

antennae. Each odorant was delivered for 5 sec. An air extractor

placed behind the bee prevented odorant accumulation, as well as

possible contamination by pheromone release.

Each conditioning trial lasted 1 min. The bee was placed in the

stimulation site in front of the air extractor and left for 20 sec

before being exposed to the odorant paired with the electric shock.

The electric shock started 3 sec after odorant onset and finished

with the odorant. The bee was then left in the setup for 35 sec and

then removed. The intertrial interval (ITI) was always 10 min.

Retention tests were performed 1 h after the last conditioning trial

and consisted of presenting odorant stimuli without punishment.

In order to ensure an ITI of 10 min, groups of 10 bees were

trained one after the other. In this way, 10 min were required for

the bees to complete each trial and to move to the next trial.

Several conditioning apparatuses were available to run several

groups in parallel if necessary.

In the paired group (Fig. 2a), conditioning trials were alternated

with 6 blank trials. During a blank trial the bee was placed in the

experimental position for 1 min and no specific stimulus was

delivered. Blank trials were used in the paired group to equate the

number of contextual experiences between paired and unpaired

groups. In the unpaired group (Fig. 2a), trials lasted also 1 min,

and only the odorant or the electric shock was presented. Thus,

bees of both groups, paired and unpaired, were subjected to 6

odorant stimulations, 6 electric shocks stimulations and 12

placements, so that only the explicit pairing of odorant and shock

differed between groups. In differential conditioning (Fig. 2b)

odorants were presented in a pseudo-random sequence of 6

reinforced and 6 non-reinforced trials (e.g. ABBABAABABBA)

starting with odorant A or B in a balanced presentation.

Experiments combining appetitive PER and aversive SER

conditioning (Fig. 3a,b) were performed with bees fixed in the

holders used for electric shock delivery. Odorants were presented

in a pseudo-random sequence of 6 sucrose-reinforced and 6

electric-shock-reinforced trials (see above). Trials reinforced with

50% sucrose solution followed the same schedule as trials

reinforced with electric shock (5 sec odorant and 2 sec sucrose

to the antenna and then to the proboscis, starting 3 sec after

the odorant onset). Control groups trained in the aversive (Fig. 3c)

or the appetitive (Fig. 3d) modality were prepared and treated

as the group receiving the combined aversive and appetitive USs

but received only one kind of US, electric shock or sucrose

solution.

In all experiments, US responses were measured before and

after conditioning or retention test. Only bees which consistently

reacted to the electric shock were taken into consideration. This is

particularly important when testing the effect of drug injection (see

below) as it precludes the possibility that the analysis reflects the

action of a given antagonist on a pathway controlling only the

sting extension reflex, irrespective of the possible association with

the paired odorant.
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Neuropharmacological experiments
Drugs were dissolved in honeybee Ringer [NaCl 130 mM, KCl

6 mM, MgCl2 4 mM, CaCl2 5 mM, HEPES 10 mM, glucose

25 mM, sucrose 160 mM]. Drugs or Ringer alone (control) were

injected into the brain through the median ocellar tract. In

addition to normal preparation, the head of each harnessed bee

was fastened to the holder with a small drop of wax to avoid

movements. A Harvard GC 100-10 microelectrode filled with the

drug to be injected was connected to an IM 300 Narishige

microinjector and used to deliver 10620 nl into the brain.

Volumes injected were calibrated before and after injection by

means of a Malassez cell. Injections were performed 30 min before

conditioning, as earlier experiments (reviewed in ref. 42) showed

that pharmacological injections of catecholamines and their

inhibitors are effective approximately 30 min after drug applica-

tion. Octopaminergic (mianserine, epinastine) and dopaminergic

receptor antagonists (fluphenazine, flupentixol, SCH23390, spi-

perone) (Sigma Aldrich, Deisenhofen, Germany) were used at mm

and mM doses (Fig. 6). Low-dose experiments (except for

flupenthixol 0.2 mm) and their respective Ringer control were

performed in parallel (yellow rows in Fig. 6). High-dose

experiments (and flupentixol 0.2 mm) were also performed in

parallel with their respective Ringer control (pink rows in Fig. 6).

The group injected with epinastine received one dose and had

a separate Ringer control (blue row in Fig. 6).

Statistics
During the experiments, we recorded the response to the

presented odorant, i.e. whether bees extended their sting after

the onset of the odorant and before the presentation of the electric

shock in the case of reinforced trials so that conditioned responses

were recorded. Multiple responses during odorant presentation

were counted as a single SER. The percentage of SER recorded

during acquisition was used to plot acquisition curves. Similar

procedure was followed for PER in the case of appetitive learning.

To analyze the variation of performance during trials, we used

analyses of variance (ANOVAs) for repeated measurements both

for between-group and for within-group comparisons. Monte

Carlo studies have shown that it is permissible to use ANOVA on

dichotomous data only under controlled conditions [43], which

are met by our experiments (equal cell frequencies and at least 40

degrees of freedom of the error term). Performances within

a retention test were analyzed by means of a McNemar test. To

compare drug-injected bees and their respective Ringer controls,

we calculated for each group a discrimination index (values reported

in Fig. 6), which was the difference between the responses to the

reinforced odorant minus the responses to the non-reinforced

odorant. This differential index (in%) was calculated for the last

acquisition trial (6th trial), as it constitutes an appropriate measure

of the discrimination reached at the end of conditioning, and for

the retention test. Comparisons between groups were done using

a Mann-Whitney test. Bonferroni corrections were used to adjust

the alpha levels of comparisons involving groups performed in

parallel.
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