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Long-Term Memory Leads to Synaptic Reorganization in the
Mushroom Bodies: A Memory Trace in the Insect Brain?
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The insect mushroom bodies (MBs) are paired brain centers which, like the mammalian hippocampus, have a prominent function in
learning and memory. Despite convergent evidence for their crucial role in the formation and storage of associative memories, little is
known about the mechanisms underlying such storage. In mammals and other species, the consolidation of stable memories is accom-
panied by structural plasticity involving variations in synapse number and/or size. Here, we address the question of whether the forma-
tion of olfactory long-term memory (LTM) could be associated with changes in the synaptic architecture of the MB networks. For this, we
took advantage of the modular architecture of the honeybee MB neuropil, where synaptic contacts between olfactory input and MB
neurons are segregated into discrete units (microglomeruli) which can be easily visualized and counted. We show that the density in
microglomeruli increases as a specific olfactory LTM is formed, while the volume of the neuropil remains constant. Such variation is
reproducible and is clearly correlated with memory consolidation, as it requires gene transcription. Thus stable structural synaptic
rearrangements, including the growth of new synapses, seem to be a common property of insect and mammalian brain networks involved
in the storage of stable memory traces.

Introduction
In insects, especially in fruitflies and honeybees, the mushroom
bodies (MBs) have been assigned an important role in the forma-
tion of olfactory associative memories (Davis, 2005; Giurfa,
2007). In a recent study on Drosophila, Krashes et al. (2007) ele-
gantly showed that different subsets of MB neurons (the Kenyon
cells) interact in a dynamic fashion to form and stabilize associa-
tive olfactory memories. In honeybees, the MBs are also involved
in the formation, consolidation and recall of olfactory memories
(Erber et al., 1980; Locatelli et al., 2005; Devaud et al., 2007).
However, the neural bases of long-term storage in these brain
structures remain unknown. Are MB neurons structurally mod-
ified when long-term memory (LTM) is consolidated? The MBs
are highly plastic structures which undergo profound changes
with the insect’s experience, especially foraging (Withers et al.,
1993; Durst et al., 1994; Farris et al., 2001; Groh et al., 2004,
Krofczik et al., 2008). However, to our knowledge the contribu-
tion of memory storage per se to stable structural changes in
higher-order brain centers has never been evaluated in insects.
Here, we demonstrate robust changes in the synaptic architecture

of the MB input region (calyces) following the consolidation of a
stable, transcription-dependent, memory of a specific odorant.

Materials and Methods
Animals. Honeybees (Apis mellifera ligustica) were collected at emergence
and kept in rearing boxes for 7 d. They were then cooled and restrained in
harnesses allowing free movement of antennae and mouthparts (Bitterman
et al., 1983), fed with 4 �l of 50% w/w sucrose solution and maintained for
3 h in a dark chamber (25°C, �75% humidity).

Behavior. Learning consisted of an associative conditioning of the pro-
boscis extension reflex (PER), in which the bees form an association
between an odorant [the conditioned stimulus (CS)] and a sucrose re-
ward [unconditioned stimulus (US)] (Bitterman et al., 1983). In paired
groups, bees received 5 trials with an intertrial interval of 10 min. At each
trial, the CS (1-nonanol; 98%, Sigma-Aldrich) was presented for 4 s and
then the US (50% w/w sucrose solution) for 3 s, with an interstimulus
interval of 3 s (1 s overlap). In the naive group (first control), bees were
placed 5 times in the setup without any stimulation to equalize experi-
ence with the experimental context. In the unpaired group (second con-
trol), bees received explicitly unpaired presentations of the CS and the US
(5 odor-only and 5 sucrose-only presentations, 5 min apart in a pseudo-
randomized sequence). As a third control, bees from the paired ActD
group received the same conditioning procedure as in the paired group,
but were injected with 1 �l of 1.5 mM Actinomycin D (Sigma-Aldrich)
using a precision syringe (Hamilton) into their thorax, 3 h after learning.
We previously showed that these conditions allowed to abolish LTM
(Hourcade et al., 2009). To control for possible effects of the injection on
memory, bees from all the other groups were injected with 1 �l of PBS
following the same procedure. All animals were fed twice a day with 4 �l
of 50% w/w sucrose solution and were kept in a dark chamber (25°C,
�75% humidity) until retrieval tests were conducted, 3 d after training.

To assess LTM, bees were given two unrewarded odor presentations,
of 1-nonanol (the CS, or learned odor) and of 1-hexanol (a novel odor)
(� 99%, Fluka), in alternated order across individuals. The percentage of

Received Feb. 16, 2010; revised March 22, 2010; accepted March 28, 2010.
This work received financial support from the Centre National de la Recherche Scientifique and Université Paul-
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specific responses to the learned odor was calculated by subtracting the
percentage of responses induced by the novel odor from that of responses
evoked by the CS. After the odor tests, bees showing no response to
sucrose (�5%) were discarded.

Immediately after the retrieval tests, paired bees showing a specific
response to the CS and control bees responding to neither of the two
odors were killed and dissected. The proportions of bees displaying such
response patterns used for selection in the corresponding groups did not
differ significantly (� 2 � 6.22, df � 3, p � 0.05) (Naive: 87.1%; Paired:
57.7%; Paired ActD: 76.3%; Unpaired: 86.1%). Thus, in all groups the
bees taken for analysis were representative, and any anatomical differ-
ence between groups would not reflect a biased selection procedure. The
brains were dissected in cold PBS, immersed overnight in 4% parafor-
maldehyde in 0.1 M PBS at 4°C, washed 3 times and processed as follows.
Before image analysis, all confocal files were encoded so that the whole
procedure [i.e., selection of the circle locations, counting of microglo-
meruli, contour tracing, and three-dimensional (3D) reconstruction of
the lips] was conducted blindfold with respect to treatment.

Microglomeruli double staining and density measurements. Microglo-
meruli were labeled and quantified adapting a published protocol for
double staining presynaptic and postsynaptic elements (Groh et al., 2004;
2006; Krofczik et al., 2008). Brains were embedded in 5% low melting-
point agarose (Agarose II, no. 210-815, AMRESCO) and sectioned in a
frontal plane (100 �m) with a vibrating microtome (Leica VT 1000S).
Free-floating sections were preincubated in PBS with 0.2% Triton X-100
and 2% normal goat serum, then incubated simultaneously in 0.2 U of
Alexa Fluor 488 phalloidin (Invitrogen, A-12379) and with a monoclonal
anti-synapsin I antibody (1:50; SYNORF1; Developmental Studies
Hybridoma Bank, University of Iowa, Iowa City, IA). Double-labeled
preparations were incubated in the secondary antibody (Alexa Fluor
546-conjugated goat anti-mouse, Invitrogen: 1:250 in PBS with 1% nor-
mal goat serum) for 2 h at room temperature. Central sections containing
the central body, the peduncles and the MB lips were scanned with a
laser-scanning confocal microscope (TCS5, Leica), with 63� oil-
immersion objective. Excitation and emission wavelengths were respec-
tively 561 nm/570 – 620 nm (Alexa 546) and 488 nm/500 –550 nm (Alexa
488). Within each brain two optical sections containing the medial lips
and collars of the two medial calyces were taken 15 �m apart. The two
channels were merged using pseudocolors in ImageJ software (Wayne
Rasband, National Institutes of Health, Bethesda, MD). On each optical
section, two circles of 400 �m 2 (in rostral and caudal positions) were
drawn within each lip and collar (8 circles in total for each of these
neuropils per animal). Microglomeruli, as identified by a clear presynaptic
and postsynaptic staining on the merged image, were counted individually in
each circle. This allowed calculation of the mean microglomerular density
per circle, averaged over 8 circles (no significant differences were found
between rostral and caudal areas in the same lip, between brain hemispheres,
or between different optical sections).

Staining procedure for volume analyses of the MB lips. Brains were
stained 3 h in neutral red (4% in PBS, Michrome n o226, Edward Gurr,
Ltd.), then rinsed, dehydrated, and clarified in methyl salicylate (Sigma-
Aldrich) for at least 4 d (at �20°C) until observation. Whole-mounts
were visualized under the confocal microscope with a 20� water-
immersion objective. Preparations were excited at 561 nm and the fluo-
rescence emission was detected at 575– 650 nm. Within each bee, frontal
optical sections (512 � 512 pixels) were taken at 5 �m-intervals in the
region of MB calyces. Complete stacks were then imported in Amira 3.1
(Mercury Computer Systems). The medial lip of each medial calyx
(where the microglomerular density had been estimated) and central
body were reconstructed by tracing manually their contours on each
section (the medial axis of the calyx was taken as the lateral limit). The
software provided a volume estimate of each reconstructed structure by
extrapolation from the drawn serial surfaces (see Fig. 3A). The mean
volume was then calculated as the average of two measurements per
animal.

Statistical analysis. Acquisition performances along trials were assessed
within each group using Cochran’s Q test. Overall performance (the sum
of responses during conditioning) was compared between groups using
Mann–Whitney U test. Retention performances at 3 d were analyzed

between groups using � 2 tests. Mean microglomerular densities were
compared across groups using a two-way ANOVA, with treatment (na-
ive, unpaired, paired ActD vs paired) and calyx subdivision (lip vs collar)
as factors. Volumetric data were subjected to a two-way ANOVA, with
treatment (naive, unpaired, paired ActD vs paired) and brain struc-
ture (lip vs central body) as factors. All statistical tests were done
using STATISTICA 5.0 (StatSoft).

Results
We performed a parallel assessment of putative synaptic density
and neuropil volume in the MB input region, the calyx, in rela-
tionship with LTM. To evaluate changes specific for LTM, we
compared brains of bees which formed an odorant-specific LTM
(paired group) with those of bees without such LTM (naive, un-
paired, and paired ActD groups).

Paired bees develop an odorant-specific and
transcription-dependent LTM
In the appetitive Pavlovian task of PER conditioning, a condi-
tioning protocol based on 5 spaced paired CS–US presentations
leads to the formation of a robust LTM that is classically mea-
sured 3– 4 d after conditioning in laboratory conditions, and can
be abolished using transcription inhibitors like Actinomycin D:
the late long-term memory (l-LTM), as opposed to the early form
(e-LTM), requiring translation but not transcription (Schwärzel
and Müller, 2006). Bees which received paired CS–US presenta-

Figure 1. Spaced olfactory conditioning leads to transcription-dependent, odorant-specific,
late long-term memory. A, Learning performances are measured as the percentage of condi-
tioned responses (PER elicited by the CS). Over the 5 trials of conditioning, only bees from the
paired groups (including those later treated with Actinomycin D: paired ActD group) formed the
CS–US association. Almost no conditioned responses were produced when the CS and the US
were temporally dissociated (unpaired) or absent (naive). B, Specific retention levels of the
association assessed 72 h after conditioning, as the difference between responses to the learned
odor (1-nonanol) and to a novel odor (1-hexanol). Bees from the paired group displayed signif-
icant levels of specific memory. Bees in which transcription was blocked after learning (paired
ActD group) or those that had not learned (unpaired and naive groups) showed levels of specific
responses not significantly different from 0. ***p � 0.001.
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tions (trials) showed an increase of conditioned responses to the
CS (Fig. 1A, paired and paired-ActD, Cochran’s Q test, Q � 94.6,
4 df, p � 0.001). As expected the temporal dissociation between
the odorant and sucrose presentations yielded almost no learning
(unpaired), nor did the experience of the setup only (naive).
Three days later, only the paired group treated with PBS showed
significant retention (McNemar’s test: � 2 � 33.03, p � 0.001)
(Fig. 1B). ActD treatment prevented stable retention, as the re-
sponse percentages of bees from the paired ActD group did not
differ from zero (� 2 � 1.33, p � 0.05), like those of bees that had
not learned initially (unpaired, naive; � 2 � 0.5, p � 0.05). We
verified that the proboscis extensions observed during the reten-

tion test in the paired group were specifi-
cally induced by presentation of the CS
(1-nonanol) and not of another odorant
(1-hexanol) for most individuals (only 25%
responded to 1-hexanol). By contrast, most
of the few control bees responding to the CS
(8.3–23.7%) also responded to the novel
odorant (12.5–15.8%), yielding levels of
specific responses close to zero (Fig. 1B).
Thus, in contrast to the controls, most indi-
viduals from the paired group had formed a
stable and CS-specific memory 3 d after
learning, and this memory was bona fide
l-LTM requiring gene transcription.

The synaptic architecture of the
olfactory MB neuropil is modified as
LTM is formed
We hypothesized that, if CS-specific
memory is related to changes in the syn-
aptic architecture of the MB calyces, the
number and/or density of synaptic com-
plexes might differ between paired bees
and bees from the three other groups,
since only the former displayed an odor-
specific memory. We visualized presynaptic
and postsynaptic elements of microglo-
meruli (see Materials and Methods) and es-
timated their density in the lip and collar of
the MB calyx (Fig. 2A). As a result (Fig.
2B), we found that, on average, the bees
that had retained the olfactory memory
for 3 d (paired) showed a higher density of
microglomeruli (MGs) than those that
had not formed such a memory (naive
and unpaired) or which were experimen-
tally prevented from consolidating the in-
formation after acquisition (paired ActD)
(one-way ANOVA, F(3,38) � 3.26, p �
0.05; post hoc t tests, t � 2.62, p � 0.05 for
all comparisons with the paired group).
This was observed in the lip but not in the col-
lar (respectively, olfactory and visual areas)
(Gronenberg, 2001) (one-way ANOVA,
F(3,38) � 0.59, p � 0.05). Thus, the change in
density in the lip was specifically related to
the transcription-dependent storage of ol-
factory information in bees from the paired
group, rather than to a nonspecific plastic
process. This change was found indepen-
dently in another experiment comparing

untreated paired and unpaired bees of unknown age (see supple-
mental Material, available at www.jneurosci.org). This indicates that
olfactory l-LTM is accompanied by a significant and reproducible
increase in MG density that seems restricted to the olfactory network
related with the storage of a CS-specific memory.

The neuropil volume of the calyx-lip remains constant as
LTM is formed
We asked whether the MB lips might also display variations in
size accompanying the variations in their synaptic organization.
In fact, the observed increase in the MG density could be the mere
consequence of a reduction in lip volume without any changes in

Figure 2. Microglomerular density is increased in the mushroom body lips when an olfactory memory is formed. A, Microglo-
merular density was measured in each medial calyx (red frame), both in the lip—receiving olfactory input from the PNs exiting the
AL—and in the collar—receiving visual input from the optic lobe (OL). ORNs, Olfactory receptor neurons. Microglomeruli were
counted in 400 �m 2 circles placed in the medial lip (continuous outlines) and collar (dotted outlines) (see Materials and Methods).
B, Estimated densities of microglomeruli averaged over 8 circles for both the lip and collar of each animal. Bees from the paired
group showed a density significantly higher than that in the 3 control groups, in the lip only. *p � 0.05; **p � 0.01.

Figure 3. The lip volume is not affected by associative olfactory long-term memory. A, The medial lips of the medial calyces
(where microglomerular density was measured) were 3D-reconstructed and their volume estimated, as was the central body (CB),
a nonolfactory center. B, No differences were found between the mean volumes of the lip and central body of the different groups
of individuals. NS, Nonsignificant.
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the number of synaptic units. To quantify possible changes in
volume, the MB lips from brains stained with neutral red were
3D-reconstructed (Fig. 3A) and their volumes estimated from
serial optical sections (see Materials and Methods). The same was
done for the central body, a midline brain neuropil involved in
locomotion control, which was used as an internal reference. The
results show no significant variation in the average volume of the
lip (or central body) among the four groups of animals (Fig. 3B)
(ANOVA, treatment � brain region, F(3,31) � 0.17, p � 0.05). We
therefore conclude that the induction of l-LTM resulted in an
increase in MG density without any change in the total volume of
the lip.

Discussion
This study shows that the formation of a transcription-
dependent LTM is accompanied by a specific, stable, increase in
the density of microglomeruli in the insect MB. Changes in the
microglomerular organization of MB lips were observed as a
function of rearing temperature (Groh et al., 2004), age (Groh et
al., 2006; Krofczik et al., 2008) or behavioral experience (Krofczik
et al., 2008). However, we show for the first time that microglo-
merular organization can be modified by the formation of an
odor-reward memory. Plasticity was modality-specific, as only
olfactory (lips) but not visual areas (collars) were affected. Such a
plasticity cannot be simply explained by differences in sensory
experience per se. Indeed, MG density differed between ani-
mals sharing the same olfactory experience (paired and un-
paired) while it was not affected by variations in olfactory
input (the unpaired and naive groups show similar MG den-
sity values). Rather, the effect was only observed after associa-
tive olfactory learning followed by a transcription-dependent
consolidation. Transcription-independent memories, such as
early-LTM (Schwärzel and Müller, 2006) obviously did not lead
to any detectable changes 3 d after conditioning, as the unpaired
and paired ActD groups displayed equivalent MG density. Hence,
either MG density remains unaltered as such memories are
formed, or it is altered only transiently. In any case, a stable in-
crease in MG density appears to be specifically linked to the for-
mation of transcription-dependent, late LTM.

Structural plasticity in the MB calyces is not manifested exclu-
sively as variations of MG density. Total neuropil volume may
also undergo changes with experience, especially at the onset of
foraging (bees, Withers et al., 1993; Maleszka et al., 2009; ants,
Gronenberg et al., 1996; wasp, O’Donnell et al., 2004). Foraging is
however a complex behavior involving spatial navigation, multi-
modal sensory discrimination and learning (Winston, 1987).
Our results suggest that the formation of stable olfactory memo-
ries occurs without changes in lip volume. This may simply reflect
the fact that under experimental conditions the number and
complexity of stored olfactory memories are well below those
actually formed under natural foraging conditions although
MB volume seems uncorrelated with learning performance
(Maleszka et al., 2009). Alternatively, an increased neuropil vol-
ume may result from greater sensory load. The detection and
discrimination of many flower compounds during foraging
would induce high activity in the olfactory pathway, thereby trig-
gering the growth of neuronal elements in the lips (Farris et al.,
2001; Jones et al., 2009; Seid and Wehner, 2009).

The LTM-related increase in MG density also differs from the
general process of MB maturation, which involves a decrease in
the density of MGs while the lip volume slightly increases (Durst
et al., 1994; Muenz et al., 2008). This is likely due to progressive
growth of Kenyon cell dendritic branches with increasing age and

sensory experience (Farris et al., 2001; Muenz et al., 2008). Con-
sistently, density was significantly higher in our 7-d-old bees (Fig.
2) than in more mature bees collected as they exited the hive
(which they typically start to do at 2–3 weeks of age) (supplemen-
tal Fig. S1, available at www.jneurosci.org as supplemental mate-
rial), regardless of memory (Mann–Whitney U test: U � 184, p �
0.001). Thus, long-term information storage, intense sensory
processing and age appear to contribute differently to complex
structural synaptic changes in the MBs in the course of an ani-
mal’s lifetime.

Since total neuropil volume remained unchanged, our results
suggests a net increase in the total number of MG. As such an
increase requires pairing between CS and US, it may be inter-
preted as activity-dependent plasticity, possibly resulting from
changes in the presynaptic input from projection neurons (PNs).
Five spaced CS–US presentations lead to increased calcium activ-
ity in the lip in response to the rewarded odorant (Faber and
Menzel, 2001) which may be due to increased incoming input
from the antennal lobe (AL) after learning (Faber et al., 1999).
Indeed, plasticity of PN responses was observed both in Drosoph-
ila (Yu et al., 2004) and Apis (Fernandez et al., 2009). Supporting
this view, LTM formation induces structural reorganizations in
AL glomeruli, which could result in increased activity from a
subset of the PNs (Hourcade et al., 2009). Even so, the observed
changes would be widely distributed in the lip volume as the
boutons of individual PNs are themselves widely scattered across
the lip volume (Müller et al., 2002).

MGs are discrete synaptic units and our results strongly sug-
gest that synaptic rearrangements, possibly including the growth
of new synapses (Gogolla et al., 2007; Hongpaisan and Alkon,
2007), take place in the MBs during LTM consolidation. Such
stable structural changes may be part of a memory trace, but
whether they are actually required for memory storage remains to
be determined. The MB lips are well suited for memory storage:
they are in adequate position for detecting coincident input from
olfactory (through the PNs) and reinforcement (through the
VUMmx1 neuron; Hammer, 1993) pathways (Menzel, 2001),
and may display reverberant activity through feedback loops
(Grünewald, 1999; Krashes et al., 2007), in a manner similar to
that of the hippocampus (Rolls and Kesner, 2006). Likewise, the
presence of many postsynaptic f-actin-rich spines in the MBs
(Frambach et al., 2004) provide a suitable substrate for structural
synaptic plasticity like in the vertebrate hippocampus (Halpain,
2000; Bramham, 2008). Spines indeed respond with rapid struc-
tural reorganization to adapt to presynaptic input changes
(Brunig et al., 2004; Lin et al., 2005). Thus, increased activity after
conditioning (see above) might trigger spinogenesis and newly
formed spines would in turn connect to PN axons and trigger the
formation of additional MG according to the “filopodial model”
(Bonhoeffer and Yuste, 2002; Yuste and Bonhoeffer, 2004). Fu-
ture experiments coupling functional imaging and structural
measures of plasticity will directly address this question.
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