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Deisig N, Giurfa M, Sandoz JC. Antennal lobe processing in-
creases separability of odor mixture representations in the
honeybee. J Neurophysiol 103: 2185–2194, 2010. First published
February 24, 2010; doi:10.1152/jn.00342.2009. Local networks
within the primary olfactory centers reformat odor representations
from olfactory receptor neurons to second-order neurons. By studying
the rules underlying mixture representation at the input to the antennal
lobe (AL), the primary olfactory center of the insect brain, we recently
found that mixture representation follows a strict elemental rule in
honeybees: the more a component activates the AL when presented
alone, the more it is represented in a mixture. We now studied mixture
representation at the output of the AL by imaging a population of
second-order neurons, which convey AL processed odor information
to higher brain centers. We systematically measured odor-evoked
activity in 22 identified glomeruli in response to four single odorants
and all their possible binary, ternary and quaternary mixtures. By
comparing input and output responses, we determined how the AL
network reformats mixture representation and what advantage this
confers for odor discrimination. We show that increased inhibition
within the AL leads to more synthetic, less elemental, mixture repre-
sentation at the output level than that at the input level. As a result,
mixture representations become more separable in the olfactory space,
thus allowing better differentiation among floral blends in nature.

I N T R O D U C T I O N

The architecture of central primary olfactory centers is
similar in vertebrates and insects. Both the vertebrate olfactory
bulb (OB) and the insect antennal lobe (AL) consist of glo-
meruli, which receive input from olfactory receptor neurons
(ORNs) expressing the same receptor type (Mombaerts et al.
1996; Vosshall et al. 2000). Glomeruli are interconnected by
different sets of local neurons, which are mostly inhibitory and
reformat odor representations in the form of a stimulus-depen-
dent, spatiotemporal redistribution of activity across the AL/
OB. The processed signals are further conveyed to higher-
order centers by output neurons, the projection neurons (PNs)
in insects, and the mitral/tufted cells in vertebrates (Fig. 1A;
Bandawat et al. 2007; Laurent 2002; Root et al. 2007; Sachse
and Galizia 2002; Wachowiak and Shipley 2006).

In Drosophila, studies on odor coding using single odor
molecules have shown nonlinear signal transformation in the
AL (Bhandawat et al. 2007; Wilson et al. 2004), which seems
to increase separability among odor representations. However,
whether such a principle applies to odor mixtures remains
unknown because most studies on the neural reformatting of
odor representations have essentially used single odorants

(Bhandawat et al. 2007; Ng et al. 2002; Wang et al. 2003;
Wilson et al. 2004). Because natural odors are complex blends
including many different components, studying how the neural
code for olfactory mixtures is reshaped by AL processing is
imperative to understand odor processing in a natural frame-
work. At the OB/AL input level, mixture representation fol-
lows essentially elemental rules because it can be predicted
from the responses to the components (Carlsson et al. 2007;
Deisig et al. 2006; Silbering and Galizia 2007; Tabor et al.
2004). By contrast, at the AL output level, strong interactions
between component signals within the AL networks were
found in the zebrafish (Tabor et al. 2004) and Drosophila
(Silbering and Galizia 2007), assigning unique properties to
each mixture’s representation and making it different from the
sum of its components. It is still unclear whether such nonlin-
ear interactions are a by-product of local processing or whether
they provide an actual benefit for mixture discrimination.

Using in vivo optical imaging in honeybees, we previously
recorded the calcium responses to four single odors and all
their possible mixture combinations in a set of well-identified
olfactory glomeruli (Deisig et al. 2006). By bath-applying the
calcium-sensitive dye Calcium Green-2 AM on the brain, we
recorded a compound signal dominated by sensory input (see
DISCUSSION). In the present study, to unravel the transformation
of mixture representation within the AL network, we backfilled
a population of PNs with the calcium-sensitive dye fura-2
dextran and recorded the calcium responses of the same glo-
meruli to the same four single odors and all their possible
mixture combinations. Thus input and output mixture repre-
sentations could be compared. We show that PN mixture
representation is the result of subtle reformatting within the
AL, which makes similarity relationships between mixture and
components less predictable based on component information,
i.e., less elemental. Furthermore, we show for the first time that
such nonelemental reformatting increases separability among
odor mixtures, thus facilitating olfactory mixture discrimina-
tion.

M E T H O D S

Preparation and staining

Worker honey bees (Apis mellifera) were caught at the entrance of
outdoor hives, cooled on ice, and mounted in Plexiglas chambers. The
antennae were oriented to the front and their base was fixed with
two-component silicon (KwikSil; World Precision Instruments, Sara-
sota, FL), providing a seal between the flagella (remaining in the air
for odor stimulation) and the brain (under Ringer solution for optical
imaging). The head capsule was then opened and all glands, mem-
branes, and trachea were removed to reveal the two antennal lobes
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(ALs). The brain was regularly washed with Ringer (in mM: NaCl,
130; KCl, 6; CaCl2, 5, MgCl2, 4; sucrose, 160; glucose, 25; HEPES,
10; pH 6.7, 500 mOsmol; all chemicals were from Sigma-Aldrich,
Lyon, France) and before staining, illumination was reduced and
switched to red light. In this work we specifically stained according to
the protocol proposed by Sachse and Galizia (2002) projection neu-
rons conveying odor information through the lateral antennocerebral
tract (l-ACT) from the AL to the mushroom bodies and the lateral
horn using fura-2 dextran (10,000 MW, in 2% BSA; Molecular
Probes). After staining, the brain was thoroughly washed with saline
and the bee was left in a dark place for 3 h.

Optical recordings of odor-evoked activity

In vivo calcium imaging recordings were done using an epifluo-
rescent microscope (Olympus BX-51WI) with a �20 (NA 0.5) water
immersion objective (Olympus UMPlanFL) and imaging system
(TILL Photonics, Gräfeling, Germany). Images were taken using a
640 � 480 pixel 12-bit monochrome charge-coupled device camera
(T.I.L.L. Imago) cooled to �12°C. The preparation was alternately
excited with 340 and 380 nm monochromatic light (T.I.L.L. Poly-
chrom IV). Each recording consisted of 100 double frames, at a rate
of 5 double frames/s. We used 4 � 4 binning on chip (pixel size
corresponds to �2 � 2 �m). Integration time was 16–32 and 4–8 ms,
respectively, for 340 and 380 nm excitation. Odor stimuli were
applied just before the beginning of the 15th double frame until the
20th double frame (i.e., odor lasted 1 s) using a computer-driven odor
supplying device as in Deisig et al. (2006). The primary odors were
1-hexanol, 2-octanol, �linalool, and limonene (Sigma-Aldrich), each
applied pure at a dose of 4 �l on 1 cm2 filter paper strips, which were
separately inserted in individual 0.7 ml syringes and mounted in the
odor-supplying device. In the case of mixture stimulation, the airflow
was directed into the syringes containing the odor components,
mixing them only during stimulation, so that single odors could not
interact chemically but added up in the mixture. Each bee was
subjected to up to three runs of 17 stimulations, each including the
four primary odors (A, B, C, and D), their binary (AB, AC, AD, BC,
BD, and CD), ternary (ABC, ACD, BCD, and ABD), and quaternary
(ABCD) mixtures as well as air and 1-nonanol, included as controls
(the latter for monitoring the quality of the recording). The order of
odor presentations was randomized between bees. The interval be-
tween stimulations was 80 s. For analysis, only complete runs were
kept and different runs were averaged before further analysis. In all,
nine bees were used in the analyses.

Mapping of glomeruli

Visualization of the glomerular AL structure after functional optical
imaging was obtained according to Sandoz (2006). The brain was
soon treated with a protease and 4% neutral red in distilled water.
Fluorescence photographs allowed visualization and identification of
22 glomeruli in all preparations, based on the standardized AL atlas
(Galizia et al. 1999). From these, 21 were imaged in a previous study
(Deisig et al. 2006) and were used for comparisons between process-
ing levels. This population of imaged glomeruli has proved to account
for olfactory behavioral performances of bees (Guerrieri et al. 2005).

Raw data processing

Analysis of calcium-imaging data was carried out using IDL 6.3
(Research Systems, Boulder, CO). Each recording to an odor stimulus
corresponded to a four-dimensional array with the excitation wave-
length (340 or 380 nm), two spatial dimensions (x, y pixels of the area
of interest), and the temporal dimension (100 frames). Three steps
were carried out to calculate the signals (Galizia and Vetter 2005).
First, to correct for bleaching at each wavelength (340 and 380 nm),
a logarithmic decline curve fitted to mean fluorescence decay was
subtracted from the whole image. The 5 s following odor onset were
not included in the fitting process. Such a correction stabilizes the
baseline of the recordings, without affecting odor-evoked responses.
Second, we performed at each wavelength (340 and 380 nm) a
scattered light correction, as done by Peele et al. (2006). Such a
correction reattributes scattered light, avoiding that glomeruli with
strong activity cause fictive activity in neighboring silent glomeruli.
We then calculated F�n � Fn �3[Fn � sm(Fn)], where Fn corresponds
to frame number n and sm(Fn) represents Fn after treatment with a
boxcar filter (kernel size 50 �m, i.e., 25 pixels). Third, for each pixel,
we calculated the ratio R of the 340 and the 380 nm data. Then, �Rn �
Rn � R0 was calculated, in which Rn is the ratio data at frame n and
R0 is the average of a few frames before the stimulus (frames 5–13).
Thus �R is close to 0 shortly before the odor stimulus and shows
throughout a recording the relative variations of the ratio. For quan-
titative analysis of the data, the time course of �R was calculated by
averaging 49 pixels (7 � 7) at the center of each identified glomerulus
and well within its borders. Then, amplitude of the odor-induced
response of each glomerulus was calculated by subtracting the mean
of 3 frames during the odor (frames 17–19) from the mean of 3 frames
before the stimulus (frames 12–14). This time window corresponded
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FIG. 1. Schematic view of the antennal lobe (AL) and odor-induced calcium activity from a population of second-order neurons (projection neurons [PNs])
in the honeybee AL. A: schematic view of the AL showing its glomerular structure and including the incoming (olfactory receptor neurons [ORNs], black) and
outgoing (PNs, green) information pathways, as well as the local network of inhibitory interneurons (LNs, blue). B: the activity patterns present the amplitude
of the calcium response obtained in one bee to 4 individual odorants and all the possible binary, ternary, and quaternary mixtures. The activity patterns are
represented according to a common intensity scale (F340/F380 ratio, top right). In all cases (except the air control), combinations of glomeruli were activated to
the individual odorants and their mixtures.
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to the moment of maximal separation power between odor response
and baseline (see Supplemental Fig. S6).1 This value was then used
in all computations. For the presentation of activity maps (Fig. 1), the
amplitude of odor-induced responses within each pixel was calculated
as before. The resulting image was then subjected to a boxcar filter of
kernel size 9 pixels and presented in a false color code of increasing
amplitude from dark blue to red.

Data analysis

The goal of the present study was to compare the rules underlying
olfactory-mixture representation between the input (as measured from
the compound signal using bath-application of Calcium Green-2 AM;
Deisig et al. 2006) and the output (measured by specific staining of the
projection neurons with fura-2 dextran; this study). We first used an
analysis rationale similar to that in the initial study, analyzing the
relationships between mixture- and component-induced signals, both
at the level of individual glomeruli and considering the whole glo-
merular pattern accessible to us. We also provided a range of novel
analyses comparing the linearity of mixture representation between
input and output and the separation power between odor representa-
tions achieved at these two levels.

NUMBER OF ACTIVE GLOMERULI. We recorded dendritic calcium
signals from l-ACT PNs in AL glomeruli. Previous experiments have
shown that these glomerular calcium responses correlate closely with
the action potential activity of these PNs (Galizia and Kimmerle
2004). Thus calcium signals from PN dendrites are a monitor for the
activity of PNs at the output side of the glomerulus (Szyszka et al.
2005). We asked how the magnitude of PN activity changes with
added mixture components. We thus measured the number of glomer-
uli in which the recorded dendritic PN signal was above noise level
(see following text), later termed “active glomeruli” for easier refer-
ence. Noise was defined as 4SD of the signal within each glomerulus
before the stimulus (frames 1–14). The proportion of excitatory and
inhibitory signals was determined from signals respectively above
�4SD or below �4SD. Since inhibitory responses were very few,
analysis concentrated on excitatory responses. The number of acti-
vated glomeruli was compared among mixture types (single odor,
binary, ternary, and quaternary mixtures) or among single odors, using
repeated-measure ANOVAs whenever possible (equal observation
numbers).

MIXTURE INTERACTIONS. For evaluation of possible mixture inter-
actions at the level of single glomeruli, the response classification
method was the same as that used in Deisig et al. (2006). For each
glomerulus the response to a mixture and the response to the strongest
component were compared. The strongest component was defined as
the component of the mixture inducing the highest response in the
considered glomerulus. The response to the mixture could be higher
than (“synergy”), equal to (“hypoadditivity”), or lower than (“sup-
pression”) the response to the strongest component. A minimum
difference of 15% on normalized data (each bee’s maximum glomer-
ular response being set to 100%) was used as the threshold for
deciding whether responses to stimulus X and Y were different. This
threshold was determined previously from the average SD of primary
odor responses (Deisig et al. 2006) and has been kept here to allow
direct comparison between input and output data sets.

SIMILARITY BETWEEN MIXTURE REPRESENTATIONS. Multivariate
analyses were used to classify the different mixtures and components
according to their proximity in a putative neural olfactory space
constructed on the basis of PN responses (Fig. 3B). The neural
representation of an odor can be regarded as a vector in a multidi-
mensional space, in which each dimension is represented by a partic-
ular glomerulus. Evaluation of the relationships between the repre-

sentation of each mixture and the representations of its components
was calculated using a Euclidean metric. The distance d between two
odors i and j was calculated as

dij � ��
k�1

p

	Xik � Xjk

2

where p is the number of dimensions (i.e., glomeruli) and Xik and Xjk

are the responses in glomerulus k to odors i and j, respectively.
Since it is not possible to visualize vectors in an n-dimensional

space, a principal component analysis (PCA) was used to project the
data into a lower-dimensionality space formed of a subset of highest-
variance components. In addition, a cluster analysis using Ward’s
classification method was performed to group single odors and mix-
tures according to their respective distances in the PN olfactory space.

ELEMENTAL MODEL OF MIXTURE REPRESENTATION. Similarity be-
tween neural representations of mixtures and their components was
quantified in terms of the Euclidean distance separating them in a
putative olfactory space, in which each dimension represents activity
of one of the recorded glomeruli. For each mixture’s component, its
distance to the mixture was calculated, relative to the sum of the
distances of all components to the mixture (Fig. 4 and Supplemental
Fig. S4). This relative distance was calculated as

Di,mix �
di,mix

�
k�1

p

dk,mix

where i indicates a component, mix is the mixture, p is the number of
components in the mixture, and dk,mix is the Euclidean distance
between a component k and the mixture in the putative olfactory space
(for a calculation example, see Fig. 7A in Deisig et al. 2006). Thus for
binary, ternary, and quaternary mixtures, equidistance between a
mixture and its components corresponds to relative distances Di,mix of
50, 33.3, and 25%, respectively. To provide a measure of relative
distance that is independent of component number (p), the relative
distance index was calculated as D�i,mix � p � Di,mix. Thus in all cases,
equidistance corresponded to a value of 1. For each mixture compo-
nent, its divergence from equidistance was calculated as the absolute
value of D�i,mix � 1. To evaluate how much odor representation
differed from equidistance at the two processing levels, these diver-
gence values were compared between PNs and compound signal data
sets using a paired t-test (Fig. 4B).

To test whether the representation of a mixture follows those of the
components (elemental model), the relative Euclidean distances be-
tween mixture and each of its components were compared with the
relative “weight” of the components in the mixture Wi,mix. Such
weight is given by the magnitude of the response (number of activated
glomeruli) to the component when presented alone, relative to the sum
of response magnitudes of all components of the mixture. Thus the
relative “weight” (W) of a component in a mixture was

Wi,mix �
Ni

�
k�1

p

Nk

where i indicates a component, mix is the mixture, p is the number of
components in the mixture, and Nk is the number of active glomeruli
when presenting odor k alone (for a calculation example, see Fig. 7B
in Deisig et al. 2006). To provide a relative weight that is independent
of the number of components, we calculated the relative weight index
as W�i,mix � p � Wi,mix. Thus for all mixtures, components having an
equal weight would yield W�i,mix � 1. We then determined the1 The online version of this article contains supplemental data.
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relationship between D�i,mix and W�i,mix, which gives an overall eval-
uation of the quality of the model, independently of the number of
mixture components. All linear correlations were tested for signifi-
cance by calculating Pearson’s r and using a t-test (Zar 1999; Fig. 4C).
To compare the efficacy of the correlation obtained for AL input
(compound signal) and output (PNs), we compared correlation coef-
ficients using a homogeneity t-test.

SEPARABILITY OF ODOR STIMULI. Because PN and compound sig-
nals had different amplitudes, the Euclidean distances between the
two data sets could not be directly compared. We thus used two
different methods to compare separability at AL input and output
levels. First, we calculated Euclidean distances on normalized data
sets—i.e., by normalizing responses in all glomeruli to all odors
according to the highest glomerular response observed in this data set
(Fig. 5). Second, we used Pearson’s correlation coefficient r as a
measure of similarity between odor representations (Supplemental
Fig. S5), which is independent of response amplitude (Peele et al.
2006; Sachse et al. 1999, 2002). Both methods gave the same results,
thus underlining the robustness of our data.

R E S U L T S

Calcium signals from projection neurons

Using the calcium sensitive dye fura-2 dextran, we per-
formed recordings from a population of uniglomerular projec-
tion neurons belonging to the lateral-antennal glomerular tract
(l-ACT), which conveys olfactory information from the AL to
higher-order centers such as the mushroom bodies and the

lateral horn. Bees were stimulated with four single odors and
all their binary, ternary, and quaternary mixtures. All stimuli
induced activity in a combination of glomeruli, whereas air
stimulation had no effect (Fig. 1B, example for one bee).
Signals were mostly excitatory (98.8%, phasic or phasic-tonic;
e.g., Fig. 2A), showing an increase in calcium concentration on
stimulation, which is in accordance with previous PN record-
ings in the honeybee (Peele et al. 2006; Szyszka et al. 2005).

Number of activated glomeruli

When considering the intensity of glomerular activation on
single odorant and mixture stimulation, we found output re-
sponse properties similar to those previously recorded at AL
input (compound signal; Deisig et al. 2006). First, the four
primary odorants yielded a significant heterogeneity in glomer-
ular activation when PN responses were quantified [repeated-
measures ANOVA, F(3,24) � 5.88, P � 0.004; Supplemental
Fig. S1A], as at the input (Deisig et al. 2006). In both data sets,
the primary odors 1-hexanol and 2-octanol induced stronger
activation (8.3 � 1.7 and 7.9 � 1.2 activated glomeruli,
respectively; means � SE), whereas linalool and limonene
induced weaker activation (5.4 � 1.2 and 3.8 � 0.7 activated
glomeruli, respectively). Second, in both data sets, the number
of activated glomeruli strongly saturated with an increasing
number of components in the mixture. In the case of PNs, no
significant difference was found between stimuli with an in-
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FIG. 2. Antennal lobe processing shows stronger influence of lateral inhibition. Repartition of glomerular responses in classes, depending on how the response
to a mixture relates to the highest response (response to the “strongest component”). The different cases relate in psychophysical terms to phenomena of
suppression (response to the mixture is below the response to the strongest component), hypoadditivity (response to the mixture is equal to that to the strongest
component), or synergy (response to the mixture is higher than that to the strongest component). A: examples of calcium responses belonging to the suppression
and hypoadditivity classes in 2 neighbor glomeruli, 48 and 49, corresponding to the presentations of 2-octanol, limonene, and their binary mixture. The graphs
present the relative variations (in %) of the F340/F380 ratio throughout a recording. The gray bar represents odor stimulation. B: comparison of the proportions
of suppression and hypoadditivity cases (mean � SE %) between recordings at the input (compound signal, n � 10; Deisig et al. 2006) and at the output (PNs,
n � 9, this study) of the AL (population � component number ANOVA, *P � 0.05; ***P � 0.001).
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creasing number of components [Supplemental Fig. S1B:
ANOVA, F(3,131) � 0.19, NS]. Third, response magnitudes to
the 15 odor stimuli were significantly correlated between AL
input and output (Supplemental Fig. S2C, r � 0.70, P � 0.01,
degrees of freedom [df] � 13). Fourth, for all odors and all
glomeruli, the amplitudes of calcium responses were highly
correlated between the two data sets (data not shown; r � 0.59,
P � 0.001, df � 312). A significant correlation was found
between PN and compound signal activity patterns in 12 of 15
cases (r � 0.43, P � 0.05, df � 19). This correlation was
significantly higher for primary and binary olfactory stimula-
tions (r � 0.60 � 0.03) than that for ternary and quaternary
ones (r � 0.47 � 0.04; t � 2.67, P � 0.02, df � 13). These
data show that AL local processing maintains similar quanti-
tative relationships between the four single odorants or be-
tween mixtures with increasing numbers of components.

Mixture interactions at the glomerular level

Average PN activity maps were constructed for the nine bees
tested (Supplemental Fig. S2). Although AL output activity
patterns were qualitatively similar to AL input patterns, some
glomeruli were exclusively activated in the compound signal
data and others rather exclusively in the PN data. As at the
input, a glomerulus exhibited PN activity on mixture stimula-
tion when it was activated by at least one of its components.
However, directly comparing the amplitudes of mixture and
component responses revealed mixture responses that could
not be easily predicted from the response to the components.
PN responses were thus classified according to categories
defined by Duchamp-Viret et al. (2003) (for details see Deisig
et al. 2006). Most glomeruli showed suppression (lower re-
sponse to the mixture than that to the most effective compo-
nent; Fig. 2A, top) and hypoadditivity (equal responses to the
mixture and to the most effective component; Fig. 2A, bottom),
whereas cases of synergy (higher response to the mixture than
that to the most effective component; not shown) were rare.
We found that increasing the number of mixture components
significantly increased suppression [Supplemental Fig. S3,
ANOVA, F(2,96) � 5.77, P � 0.005], whereas the number of
hypoadditivity and of synergy cases did not change [respec-
tively, F(2,96) � 0.40, NS and F(2,96) � 0.21, NS]. A substantial
difference appeared between AL input and output at this level
(Fig. 2B): PN signals showed significantly more suppression
than that shown by compound signals [population � compo-
nent number ANOVA, population effect: F(1,203) � 6.11, P �
0.014; component number effect: F(2,203) � 16.9, P � 0.001],
and logically less hypoadditivity [population effect: F(1,203) �
13.6, P � 0.001; component number effect: F(2,203) � 0.19,
NS]. This indicates that local networks in the AL produce
increased suppression of mixture activity at AL output relative
to its input.

Similarity between mixture and single odor representations

We evaluated similarity relationships between odor repre-
sentations on the basis of Euclidean distances within a putative
olfactory space, in which each dimension is represented by
activity within one of the recorded glomeruli. Similarity be-
tween mixture and component representations was globally
conserved from AL input to output (Fig. 3A; correlation of

distances between all possible odor pairs from both data sets,
r � 0.66, P � 0.001, df � 103). A PCA revealed three very
conspicuous groups of odors, based on their similarity relation-
ships (Fig. 3B, the first two factors represented 66.2% of
overall variance). This picture was confirmed by a cluster
analysis (Fig. 3C; see PN column). Cluster 1 grouped the two
weaker odors (in terms of the number of active glomeruli; see
Supplemental Fig. S1A) limonene, linalool, and their binary
mixture. Cluster 2 included the strong odor 1-hexanol and all
its mixtures with linalool and/or limonene. Cluster 3 grouped
the strong odor 2-octanol and all its mixtures and showed a
subdivision. One subcluster included all mixtures containing
2-octanol and limonene; the other subcluster contained 2-oc-
tanol and all its mixtures with 1-hexanol and linalool. This
repartition strongly correlated with that found for the input
(Deisig et al. 2006 and Fig. 3C; see compound signal column).
Thus although more suppression is evident at the output of the
AL, local processing does not modify mixture representation in
a drastic way.

Linearity of mixture representations

Similarity relationships among odors found within both the
input and the output neural spaces were correlated, but whereas
compound signal-based similarity relationships between a mix-
ture and its components could be predicted by an elemental
model based on the physiological salience of components
(defined as the number of glomeruli activated by each compo-
nent), a strong and significant departure from the elemental
model was observed at the PN level. This is illustrated by the
relative Euclidean distances between the representations of
each mixture and its components, when calculated in both the
glomerular multidimensional input (compound signal, in
black) and the output (PN, in white) spaces (Fig. 4A, represen-
tative example of the quaternary mixture; Supplemental Fig.
S4 shows the same comparison for all mixtures). Bars of equal
length correspond to a perfect balance (equidistance) between
the components of a mixture (50% for binary, 33% for ternary,
and 25% for the quaternary mixture; dotted lines in Fig. 4A and
Supplemental Fig. S4). Although compound signal data re-
vealed strongly asymmetrical representations of components in
the mixtures (which were explained by different physiological
saliences of the components; see following text), component
representations in the PN data were more equidistant to their
mixture. Components were thus more balanced within mixture
representation at the PN level in four of the six binary mix-
tures, in all ternary and in the quaternary mixture. When
analyzing the mean divergence of each component to equidis-
tance in the two data sets (Fig. 4B, 0.29 � 0.03 for compound
signal and 0.17 � 0.02 for PNs), components were signifi-
cantly closer to equidistance at the output level than at the input
level (paired t-test, df � 26, P � 0.0012). As a consequence
(Fig. 4C), the elemental principle holding for the input is the
stronger a component is (i.e., the more glomeruli it activates),
the more similar the mixture is to this component (i.e., the
smaller the distance between mixture and component). Indeed,
we found a highly linear negative correlation coefficient be-
tween these two variables (r � �0.94). By contrast, output
representation showed a much more scattered trend, with a still
negative but lower correlation coefficient (r � �0.60). Al-
though both correlations were significant (P � 0.001, 26 df),
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the coefficient for PNs was significantly lower than that ob-
tained for compound signals (homogeneity t-test, P � 0.001).
Thus when compared with the AL input, output mixture
representations display a significant departure from the ele-
mental model, which may be attributed to local processing and
increased suppression as found before.

Separability between odor representations

What could be the benefit of such fine modifications of
mixture representation in the AL? We hypothesized that such
reformatting may improve odor separability. To test this idea,
we compared Euclidean distances between glomerular activa-
tion maps based on normalized input and output data sets. In
line with our hypothesis, odor response patterns were signifi-
cantly more dissimilar, i.e., distances were higher for PNs than
those for the compound signal over all possible odor pairs (n �
105, Fig. 5A, Wilcoxon matched-pair test, z � 3.06, P � 0.002,
df � 104). We also found that distances were significantly
higher at the PN level for comparisons between any two of the
mixtures (Fig. 5B, n � 55, z � 2.49, P � 0.023), but not when
comparing mixtures to single odors (“elements,” Fig. 5B, n �
44, z � 1.30, NS). Comparisons between single odors were
also not significant (data not shown, n � 6, z � 1.6, NS). Thus
AL processing increased Euclidean distances between mixture
representations. This effect was not due to data normalization
because distances between odors and the air control were
identical for the compound signal and PN data sets, after

normalization (1.78 � 0.10 and 1.79 � 0.09, respectively, z �
0.17, NS). Moreover, this effect was confirmed by using
correlation coefficients between response patterns, a measure
of pattern similarity that is independent of differences in
response intensity in the two data sets. This analysis showed
again that output activity patterns were less correlated than
input patterns (n � 105, Supplemental Fig. S5, z � 2.37, P �
0.017). This effect appeared for comparisons among mixtures
(z � 5.32, P � 0.001), but was not significant for comparisons
between mixtures and single odors (z � 1.61, NS). Thus the
main effect of AL processing was to decorrelate mixture
activity patterns.

Time course of component–mixture relationship

As shown earlier, projection neurons can show polymor-
phous responses, including phasic, phasic-tonic, and some-
times more complex time courses after stimulus presentation
(Sachse and Galizia 2002). We thus asked whether the rela-
tionship between mixture and component representations
changes with time and thus whether the rules we describe apply
throughout the epoch of projection neuron activity. To do this,
we computed Euclidean distances between mixture and com-
ponent representations at each time point, after setting all data
to 0 at the first frame (to avoid calculation artifacts before the
stimulus). We represented the evolution of the average distance
between each mixture type and its components throughout an
entire recording (Supplemental Fig. S6). At odor onset, dis-
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mension. The graph presents the correlation
of Euclidean distances between the 105 pos-
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odor similarity relationships are conserved
by AL processing (r � 0.66, P � 0.001, 103
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extracted using a principal component anal-
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et al. 2006).
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tances between stimuli increased dramatically on stimulus
delivery and reached a maximum about 600 ms after stimulus
onset, decreasing to near baseline after stimulus offset. The
evolution of the distance was the same for all mixture types
(binary, ternary, quaternary) and closely followed the evolution
of the distance between single odors. When evaluating the
correlation between the different curves at signal maximum (2
s during which the distance is at its highest, i.e., 200 to 2,200
ms after stimulus onset; see dotted line in Supplemental Fig.
S6), all coefficients were �0.991. This indicates that the
relationships between mixture and component representations
follow the same time course throughout a recording.

D I S C U S S I O N

Our study shows that AL processing introduces fine rear-
rangements in mixture neural representations, so that 1) com-
ponents are more homogeneously represented within a mixture
representation at the PN level than at the input level, 2) mixture
representation is less predictable by an elemental model, and
3) odor mixture representations become more separable after
AL processing.

Recent works investigated reformatting of odor representa-
tion within the AL and compared input and output representa-
tions of a range of monomolecular odorants. These studies,
performed with different techniques, revealed contrasting pro-
cessing principles, but led to a similar conclusion. Optical
imaging in honeybees illustrated that AL processing sharpens

odor response profiles of PNs, leading to better differentiation
between single odorants (Sachse et al. 2002, 2003). By con-
trast, electrophysiology in fruit flies revealed a broadening of
odor response profiles of PNs but, as in bees, this modification
led to an improved discrimination between odorants (Bhanda-
wat et al. 2007). Because olfactory mixtures constitute more
natural stimuli than monomolecular odors we studied AL-
induced modifications in mixture representation. We show that
a rather fine rearrangement occurs from AL input to output and
that such a rearrangement results in a higher separation power
between complex odors. Several studies suggested that mixture
representation is rather elemental at the input level (zebra fish:
Tabor et al. 2004; bees: Deisig et al. 2006; moths: Carlsson et
al. 2007; fruit flies: Silbering et al. 2007), even though within
individual ORNs nonlinear responses to mixtures can be ob-
served (Akers and Getz 1993; Cromarty and Derby 1998;
Duchamp-Viret et al. 2003). At the output level, studies in the
zebrafish (Tabor et al. 2004) and in Drosophila (Silbering et al.
2007) showed an increased proportion of cases of nonlinear
summation between component signals within individual neu-
rons or glomeruli. Increased suppression phenomena at the PN
level in our study fully confirm these accounts (Fig. 2B).
However, there is an important choice to make when compar-
ing two processing levels, that is 1) focusing on particular units
(as in most studies) or 2) describing odor representation in its
multidimensional (global) quality (Bhandawat et al. 2007;
Broome et al. 2006; this study). Both approaches are certainly
helpful; however, the whole odor response pattern seems to
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have more consequence on the animal’s behavior than individ-
ual units, in that the latter allows predicting olfactory behavior
(Guerrieri et al. 2005). Previous studies neither analyzed the
multidimensional quality of mixture representation nor did
they evaluate the separability of mixture representations at both
processing levels. Our study is the first to evaluate these points.

For comparing mixture representation at two processing
levels, we used in vivo calcium imaging based on two different
staining techniques. As with any experimental approach, some
cautionary arguments should be made, which relate to 1) the
cell populations participating in the signals and 2) the link
between calcium signal and neural activity.

CELL TYPES. For the input signal, we bath-applied a permeable
calcium sensitive dye, Calcium Green-2 AM, on the brain.
With this protocol, all AL cells could be potentially stained
(ORNs, PNs, local inhibitory interneurons, glia), but ORNs are
by far the most numerous. In addition, the recorded signals are
highly stereotyped and never show any spontaneous activity or
any inhibitory responses, which are typical for local neurons
and PNs (Sachse and Galizia 2002). Therefore the participation
of LNs or PNs in the compound signal is thought to be
negligible (Galizia and Vetter 2005). A significant part of the
signal may come from glial cells surrounding each glomerulus
because in the hawkmoth Manduca sexta, bath application of
Calcium Green was shown to mainly stain periglomerular glial
cells in adults and odors trigger activity in these cells (Heil
et al. 2007). Even so, it is clearly established that release of
acetylcholine (ACh) from ORN axons leads to activation of
nicotinic receptors (nAChRs) in these glial cells, which depo-
larizes the cell membrane and thereby opens voltage-gated
calcium channels (VGCCs). In other words, even if glial cells
participate in the calcium signal, they do so in a manner

directly correlated to ORN input. We thus interpret the com-
pound signal as mainly representing sensory input. For record-
ing the output representation (present recordings), we used
retrograde staining of PNs with fura-2 dextran and the signal
was recorded from the glomeruli (i.e., the dendrites of these
neurons in the AL). In this case, there is no doubt that only PNs
participated in the signal because the dye was injected rather
far away from the AL and confocal scans confirmed the
specificity of the staining (Sachse et al. 2002; our observation).

CALCIUM SIGNAL AND NEURAL ACTIVITY. The second question
relates to the quantitative relationship between the recorded
calcium signals and spiking activity of olfactory neurons.
Calcium imaging is used as a standard technique for recording
neural activity at the network level in many systems (Kwan
2008), since it has been consistently shown that the recorded
fluorescence changes are a direct result of calcium influx from
action potentials (Kerr et al. 2005) and can be used to recon-
struct firing rates efficiently (Yaksi et al. 2006). In our system
several arguments indicate a tight link between firing rate and
calcium signal. First, recordings of both electrophysiological
activity and calcium imaging showed that excitatory (respec-
tively, inhibitory) electrical activity is accompanied by positive
(respectively, negative) calcium signals in AL neurons (Galizia
and Kimmerle 2004). In addition, calcium imaging of honey-
bee PNs in primary cell cultures and pharmacological applica-
tions performed in our laboratory showed that ACh, which
depolarizes the membrane and triggers spiking activity, in-
duces dose-dependent calcium signals predominantly (�80%)
through VGCC (V. Raymond-Delpech, A. Augier, T. Jaillard,
J. C. Sandoz, unpublished data). Therefore we believe that the
calcium signals recorded in our system are closely related to
the electrical activity of the neurons.
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With these comments in mind, our study shows that AL
processing globally conserves the overall structure of the odor
space (Fig. 3B) and keeps a similar coarse classification of odor
representations (Supplemental Fig. S5). However, AL process-
ing improves fine odor-similarity relationships. A careful eval-
uation of mixture–component relationships shows that compo-
nents are more homogeneously represented at the PN level than
at the input level (Fig. 4B; see following text). This work also
shows for the first time that such interactions bestow improved
separability of mixture representations. Both observations sug-
gest that, as in fruit flies (Bhandawat et al. 2007), AL process-
ing produces more uniform distances between odor represen-
tations, thereby increasing the global efficiency of the system
for odor discrimination (Fig. 5A). In other words, PNs appear
to use their multidimensional coding space better than ORNs,
both for single odors (Bhandawat et al. 2007) and for odor
mixtures (this study). Components were more homogeneously
represented within mixture patterns at the PN level (Fig. 4B).
This may be a result of the decorrelation of odor representa-
tions through AL processing. If AL processing provokes more
homogeneously distributed representations in the PN space, it
could have the collateral effect of decreasing asymmetries in
component–mixture relationships. A direct consequence would
be that mixture representation would no longer contain precise
information about the relative quantity of its components. If so,
PN mixture representation should be more concentration in-
variant with regard to differences in components’ quantity than
at the ORN level. Such a property could be important for
honeybees, which are “flower constant,” thus limiting their
visits to a single plant species as long as it is profitable (Grant
1950). Floral aromas are multicomponent blends that fluctuate
in composition according to genotype and flowering stage
(Pham-Delègue et al. 1989). Our results indicate that the
olfactory system may provide such a component-concentration
invariant representation.

Our results fully support a two-tiered model of lateral
inhibition in the AL (Sachse and Galizia 2002; Silbering and
Galizia 2007), with one tier representing homogeneous inhibi-
tion, playing the role of a gain control and a second tier
representing heterogeneous, asymmetrical inhibition between
glomeruli. We observed the first tier at the input level because
inhibition reduced overall signal strength, thereby avoiding
saturating the system, but kept elemental information within
mixture representation (Deisig et al. 2006). PN results point to
the second tier, with an inhibitory system provoking more
interactions between components within mixture signals and
modifying fine odor-similarity relationships. Such a system
could explain the observed departure from elemental mixture
representation. What could be the neural basis of such a
model? The honeybee AL contains two main anatomical types
of local inhibitory interneurons, possibly representing the two
tiers: roughly 13% of the 4,000 local interneurons diffuse
homogeneously in the AL (homo-LNs), whereas the rest show
a high branching density in one particular glomerulus (hetero-
LNs: Flanagan and Mercer 1989; Fonta et al. 1993). Homo-
LNs would be involved in gain control (first tier) and are
thought to represent a picrotoxin-sensitive network, based on
GABAergic neurotransmission (Sachse and Galizia 2002). On
the other hand, hetero-LNs would accomplish focused lateral
inhibition between physiologically neighbor glomeruli (second
tier) and would constitute a picrotoxin-insensitive network

(Sachse and Galizia 2002). The neurotransmitter for this sec-
ond tier is still unknown. Recently, a histaminergic inhibitory
system has been proposed (Sachse et al. 2006), but it likely
belongs to the first tier because histamine-immunoreactive
interneurons are few (�35 LNs; Bornhauser and Meyer 1997)
and histamine application during calcium imaging already
provokes a strong reduction of odor-evoked signals at the input
level (Sachse et al. 2006). Other candidates could be glutamate
(Barbara et al. 2005; El Hassani et al. 2008), but also �-ami-
nobutyric acid through possible picrotoxin-insensitive hetero-
meric chloride channels (Dupuis et al. 2010). In contrast to
Drosophila, up to now, no excitatory interneurons have been
found in the bee.

The honeybee olfactory system is mainly organized along
two parallel pathways, with two main types of uniglomerular
PNs taking information from different subsets of AL glomeruli
(Abel et al. 2001; Kirschner et al. 2006; Müller et al. 2002).
Comparing the rules described here for lateral-ACT neurons
with those of the second population (median-ACT) could be
especially promising: l-ACT neurons could provide the brain
with component-composition invariant information, whereas
m-ACT neurons would keep track of relative component quan-
tities. A necessary step should thus be the study of the subse-
quent reformatting of mixture representations in higher-order
brain centers. The strong sparsening of odor representation
from PNs to Kenyon cells, the intrinsic mushroom body
neurons (Perez-Orive et al. 2002; Szyszka et al. 2005), and
their coincidence detection properties (Jortner et al. 2007)
could be the basis for mixture-specific units, as in the mouse
olfactory cortex. There, about 30% of all recorded neurons
were mixture specific, responding to binary mixtures, but not to
either of their components (Zou and Buck 2006). Whether
equivalent units exist in the mushroom bodies remains to be
tested.
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