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ABSTRACT 

Physiology, behavior, abundance and distribution of ectotherms, such as insects, are highly 

influenced by temperature. Knowledge about their responses to temperature allows the 

development of simulation models that mimic their spatio-temporal dynamics. These 

constitute important tools for invasive pest management as they allow identification of 

vulnerable zones and an accurate timing and placement of control measures. 

 In this study we tackled the issue of modeling the spread and distribution of three 

species of invasive Potato Tuber Moth in the highly heterogeneous North Andean Region. We 

developed modeling approaches that allowed us to overcome common difficulties associated 

with modeling invasive dynamics in this region. First, we developed a spatially-explicit 

cellular automaton that simulated moth spatio-temporal propagation while taking into account 

the influence of human activity on moth spread. We also developed models capable of 

accounting for the influence of thermal variation on moth dynamics and of simulating 

dynamics even when adjusted to small data sets. Finally we developed an individual based 

model that simulated PTM temperature-related dynamics and was used to construct current 

and future pest risk maps at the scale of the North Andean Region.  

 This work revealed the importance of both human-induced and environmental 

heterogeneity as drivers of PTM invasion. Including biotic interactions, as well as more detail 

in environmental and social heterogeneity constitute interesting perspectives that could 

enhance the realism and accuracy of future modeling approaches in the region. The methods 

developed in this thesis could constitute important tools for integrated pest management since 

they may help to enhance farmers and stakeholders’ understanding of the threats posed by 

these pests and raise their awareness about the influence of their actions on pests’ invasion 

dynamics.  

Key words 

Agricultural landscapes, cellular automata, climate change, individual based model, invasive 

pests, North Andean Region, Potato Tuber Moth 
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RESUMÉ 

CHANGEMENTS GLOBAUX ET MODELISATION DE LA DISTRIBUTION 

D’INSECTES RAVAGEURS INVASIFS DANS LES ANDES TROPICALES 

Modélisation de la dynamique des insectes en relation avec la température 

La physiologie, le comportement, l’abondance et la distribution des êtres vivants sont 

grandement influencés par leur environnement (Messenger 1959, Angilletta et al. 2010). Dans 

le cas des organismes ectothermes tels que les insectes, la température constitue un facteur 

environnemental clé contrôlant leur dynamique. Des études ont montré que ce facteur 

influence de nombreux aspects de la biologie des insectes depuis les variations temporelles de 

leur croissance, leur survie et leur reproduction (Angilletta et al. 2002, Savage et al. 2004, 

Stillwell and Fox 2005, Steigenga and Fischer 2009, Gutiérrez et al. 2010, Opit et al. 2010) 

jusqu’aux patrons géographiques de la taille de leur corps, de la densité de leurs populations 

et de la diversité et distribution des différentes espèces (Angilletta et al. 2004, Brown et al. 

2004, Hodkinson 2005, Karl et al. 2008, Régnière et al. 2009). La compréhension de 

l’influence de la température sur la fitness des espèces permet de mieux comprendre la 

distribution géographique, les fenêtres temporelles d’activités et les interactions compétitives 

(notion de niches thermiques) des insectes en relation avec la température (Huey and 

Stevenson 1979). La modélisation écologique de la réponse des insectes à la température est 

donc une approche courante afin d’analyser et synthétiser au mieux cette information. 

 La réponse des insectes à la température est généralement décrite par des modèles de 

performance thermique. La performance est définie comme « toute mesure de la capacité d’un 

organisme à « fonctionner » et est généralement exprimée comme un taux ou une 

probabilité » (Angilletta 2009). Des mesures usuelles de la performance thermique sont la 

survie, le développement, la croissance, la fécondité, la locomotion, l’assimilation et le 

fourragement (Gilchrist 1995, Angilletta 2009). Les modèles de performance thermique 

consistent en des fonctions mathématiques qui décrivent la relation entre la température et une 

mesure de la performance des insectes, chaque mesure ayant généralement une fonction 

mathématique appropriée. Toutefois, dans certains cas, la même mesure de performance peut 

être décrite à l’aide de plusieurs fonctions différentes. La combinaison de plusieurs modèles 

décrivant chacun la réponse d’une mesure de performance à la température (p.ex. survie, 
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fécondité, développement) permet la simulation de réponses complexes des organismes à la 

température (Angilletta 2009). Par exemple, il est possible de simuler la dynamique des 

populations, la phénologie ou encore la distribution d’un groupe d’individus dans le temps en 

construisant un modèle intégratif qui inclut les fonction de survie, développement et 

reproduction de ce groupe en fonction de la température (Buffoni and Pasquali 2010). 

L’amélioration constante des capacités computationnelles permet la construction de modèles 

toujours plus complexes à des échelles spatiales et temporelles toujours plus grandes (Logan 

et al. 2007, Régnière et al. submitted).  

 La plupart des êtres vivants sont confrontés à un environnement hétérogène et 

fragmenté, ce qui influence grandement la dynamique de leurs populations (Cadotte et al. 

2006, Jongejans et al. 2008). Simuler la dispersion des populations dans ce type de paysages 

ou régions nécessite donc d’inclure une composante spatialement explicite dans les modèles 

(Sebert-Cuvillier et al. 2008, Vinatier et al. 2011). C’est le cas de nombreux types de modèles 

tels que les automates cellulaires (CA) (Soons et al. 2005, Herben et al. 2006, Prasad et al. 

2010) qui peuvent simuler une dynamique spatiale en intégrant des cartes géographiques, ce 

qui les rends non seulement spatialement explicites mais également spatialement réalistes 

(Harris et al. 2009). Ils sont d’un intérêt majeur lorsque l’on cherche à comprendre la 

dynamique d’une espèce dans un paysage ayant une configuration donnée (Jongejans et al. 

2008). Les modèles individus centrés (Goslee et al. 2006, Nehrbass et al. 2007, Harris et al. 

2009, Carrasco et al. 2010, Travis et al. 2010, Vinatier et al. 2009, Travis et al. 2011) sont un 

autre groupe de modèles spatialement explicites qui présentent l’avantage d’incorporer un 

haut niveau de complexité démographique puisqu’ils prennent en compte chaque individu 

dans la population (Nehrbass et al. 2007, Jongejans et al. 2008). Ces deux types de modèles 

sont ainsi complémentaires pour simuler et comprendre la dynamique de propagation de 

population dans des régions présentant une forte hétérogénéité. 

Développement de modèles dans les montagnes tropicales  

Modéliser la dynamique et la distribution d’espèces dans les régions montagneuses tropicales 

telles que la région nord andine est une tâche difficile qui nécessite de la part du modélisateur 

de relever plusieurs défis. L’un de ces défis est l’importante fragmentation des paysages, 

principalement due à l’activité agricole (Young and Lipton 2006) qui les a transformé en de 

complexes mosaïques de champs cultivés. La menace majeure exercée par les espèces 
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invasives dans ces régions souligne le besoin urgent de comprendre et prédire la distribution 

et la propagation de ces espèces tout en tenant compte de l’influence anthropique sur cette 

dynamique. Par ailleurs, la variabilité climatique dans les montagnes tropicales influence 

fortement la dynamique de ces espèces et doit être nécessairement prise en compte dans un 

exercice de modélisation. Les variations saisonnières sont pratiquement absentes des régions 

tropicales (Denlinger 1986, Stiling 2002, Vazquez and Stevens 2004, Dangles et al. 2008, 

Angilletta 2009, Grimbacher and Stork 2009) mais la diminution graduelle de la température 

de l’air avec l’augmentation de l’altitude (Stiling 2002, Angilletta 2009) génère une forte 

hétérogénéité spatiale. Cette caractéristique impose des contraintes spatiales plutôt que 

temporelles sur la dynamique des populations des espèces des montagnes tropicales (Dangles 

et al. 2008). Une autre caractéristique importante des montagnes tropicales est que la variation 

des températures durant la journée est généralement plus grande que la variation de la 

température moyenne mensuelle au cours de l’année (Denlinger 1986). L’environnement 

thermique subi par les insectes dans ces régions est donc fortement fluctuant et une meilleure 

connaissance de la façon dont les populations d’insectes sont influencées par ces régimes 

thermiques est d’une importance capitale afin de générer des prédictions robustes et réalistes 

de leur dynamique. De plus, une autre caractéristique importante des régions tropicales est le 

fait qu’elles englobent en majorité des pays en voie de développement (see Dangles et al. 

2009a) où l’information concernant la réponse des insectes à leur environnement est 

généralement très fragmentaire. Ceci constitue une limite majeure pour la validation des 

modèles et demande une implication des modélisateurs dans la collecte de données 

empiriques et/ou expérimentales.  

 Les cartes de risques de ravageurs, largement utilisées dans le cadre de programmes de  

protection intégrée des cultures, décrivent la probabilité d’invasion et d’établissement de 

ravageurs de cultures dans une nouvelle région ou paysage. (Venette et al. 2010). Le 

développement de ces cartes à l’échelle régionale dans les zones tropicales de haute altitude 

est confronté aux défis suscités (c.à.d. à l’hétérogénéité sociale et environnement et au 

manque de données). De plus les prédictions d’invasions futures liées aux modifications des 

conditions climatiques (réchauffement global) sont confrontées à l’incertitude liée aux 

modèles climatiques, souvent peu régionalisés dans les zones tropicales, notamment dans les 

Andes. 
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Modélisation de l’invasion par la teigne de la pomme de terre dans les Andes tropicales 

La présente étude a pour objectif la modélisation de ravageurs invasifs de la pomme de terre 

dans la région Nord andine. Le complexe d’espèces des teignes de la pomme de terre (TPT, 

Lepidoptera, Gelechiidae) représente une des principales menaces à la production de pomme 

de terre dans la zone tropicale et intertropicale. Trois espèces de ce complexe, Phthorimaea 

operculella (Zeller), Symmetrischema tangolias (Gyen) and Tecia solanivora (Povolny), ont 

envahi les paysages agricoles de la région nord-andine lors des 30 dernières années à partir 

d’introductions successives de différentes origines géographiques. Les larves des TPT 

creusent de profonds tunnels dans les tubercules de pomme de terre afin de se nourrir ce qui 

les rends impropres à la consommation et à la commercialisation. Les larves de S. tangolias 

and P. operculella peuvent aussi se nourrir des tiges et des feuilles des plants de pomme de 

terre. Les pertes de rendement causées par ces espèces sont considérables dans la région nord-

andine, en particulier dans les régions les plus pauvres (Dangles et al. 2008). Plusieurs études 

ont montré que la température a une action prépondérante sur les dynamique des TPT (Keller 

2003, Sporleder et al. 2004, Dangles et al. 2008) et représente donc un paramètre 

environnemental clé afin de générer des modèles régionaux de distribution et de propagation 

de ces espèces. De tels modèles représentent des outils intéressants afin d’améliorer le 

contrôle intégré de ces ravageurs car ils permettent l’élaboration de cartes de risques 

d’invasion et d’établissement à une échelle locale. 

 Afin de relever chacun des défis (précédemment mentionnés) concernant la 

modélisation de la dynamique spatio-temporelle de ces espèces, nous avons développé 

plusieurs stratégies, détaillées dans chacune des quatre parties de ce document de thèse, et 

résumées ci-dessous : 

Chapitre 1 -  Afin de mieux comprendre l’influence de l’hétérogénéité spatio-temporelle 

(induite par les activités humaines à l’échelle d’un paysage agricole) sur la propagation des 

teignes, nous avons développé un automate cellulaire simulant la dynamique d’invasion de T. 

solanivora dans une petite vallée des Andes, dans le centre de l’Équateur. Ce modèle nous a 

permis  d’intégrer des informations détaillées concernant le paysage et de déterminer 

l’influence relative de l’hétérogénéité environnementale versus sociale sur la propagation des 

teignes. Nous avons ciblé notre étude sur deux types d’activité anthropique influençant la 

propagation des teignes : 1) la présence et la distribution de structures de stockage de 
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tubercules qui modifient localement l’environnement thermique (Dangles et al. 2008, 

Appendix D), et 2) la dispersion passive à longue distance des teignes générée principalement 

par les échanges commerciaux et qui permet aux ravageurs de coloniser des zones en principe 

inatteignables par leurs propres capacités de dispersion (EPPO 2005, Dangles et al. 2010). 

Chapitre 2 - Nous avons ensuite cherché  à mieux comprendre le rôle de l’hétérogénéité 

environnemental des paysages tropicaux andins sur la dynamique des populations de teignes 

afin d’améliorer la fiabilité et la relevance de nos modèles (Gilchrist 1995, Davis et al. 2006, 

Adamo and Lovett 2011). Nous nous sommes principalement intéressés à comparer 

l’influence de températures constantes versus fluctuantes sur la dynamique d’oviposition des 

trois espèces de TPT. Dans ce contexte, nous avons développé un modèle de taux 

d’oviposition basé sur des données acquises à températures constantes, et l’avons utilisé afin 

de simuler des dynamiques populationnelles dans les cas de régimes thermiquement stables et 

fluctuants. 

Chapitre 3 - Face à la disponibilité limitée de données empiriques et expérimentale 

nécessaires à la construction de modèles sur l’ensemble du gradient thermique dans lequel 

évoluent les teignes, nous avons évalué la robustesse de trois types de modèles de survie des 

TPT (Regnière, Sporleder et Sharpe et DeMichel) en présence de jeux de données limités, 

notamment aux limites de notre gradient thermique (températures minimales et maximales qui 

sont souvent les plus difficiles à obtenir). Nous avons ensuite confronté nos résultats à des 

données de terrain des limites de distribution altitudinales de nos trois espèces de teignes en 

Équateur. 

Chapitre 4 – Enfin, nous avons construit un modèle individu centré permettant de simuler la 

survie, le développement et le taux d’oviposition des trois espèces de teignes en fonction de la 

température, en prenant en compte des générations successives d’individus soumis à 

différents régimes de températures journalières caractéristiques des Andes tropicales. Les 

sorties de ce modèle, couplé à la plateforme de modélisation BIOSIM, nous ont permis de 

construire des cartes de risques d’invasion de TPT à l’échelle de la région Nord-andine. Des 

scénarios de distribution spatiale de ces teignes dans le futur en fonction de plusieurs 

scénarios régionaux de changement climatiques ont aussi été établis à l’échelle de la zone 

nord-andine. 
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1. INSECTS’ LIFE CYCLE, DYNAMICS AND DISTRIBUTION 

Organisms’ physiology, behavior, abundance and distribution are highly influenced by their 

environment (Messenger 1959, Angilletta et al. 2010). Understanding the responses of 

organisms to environmental variables is a key element for simulating their dynamics in 

particular environments and consequently making predictions about their phenology and 

geographic distribution (Messenger 1959, Régnière 1996, Logan et al. 2007). Such 

forecasting capabilities are of prime importance for the fields of economic entomology, 

invasion biology, and pest ecology since they allow a more accurate timing and placement of 

pest management efforts (Régnière and Sharov 1998). 

As pointed out by Andrewartha and Birch (1960), an animal’s environment comprises 

four main components: weather, food, other organisms (of the same or of different species), 

and “a place in which to live” (i.e. the habitat). Even though, in theory, animals might be 

influenced by all of these components, in practice, only one or a few of these may account for 

most of the variability observed in life-history patterns and population dynamics 

(Andrewartha and Birch 1960). In the case of ectothermic organisms, such as insects, 

temperature is a key environmental factor. It has been shown to influence everything from 

temporal patterns of growth, survival, and reproduction (Angilletta et al. 2002, Savage et al. 

2004, Stillwell and Fox 2005, Steigenga and Fischer 2009, Gutiérrez et al. 2010, Opit et al. 

2010) to spatial patterns of body size, population density and species diversity and 

distribution (Angilletta et al. 2004, Brown et al. 2004, Hodkinson 2005, Karl et al. 2008, 

Régnière et al. 2009).  

The importance of temperature in controlling ecological processes lies on its influence 

on biochemical reaction rates, metabolic rates, and nearly all other rates of biological activity 

(Hochochka and Somero 2000, Brown et al. 2004). Angilletta defines the thermal sensitivity 

as the degree to which an organism’s performance depends on its temperature (Angilletta 

2009). According to this same author there are three factors that cause thermal sensitivity at 

the cellular level: 1) thermal effects on enzymes and other proteins, where temperature 

changes alter enzymes’ conformation and may impair their function; 2) effect of temperature 

on the movement and conformation of cellular membranes, where relatively low temperatures 

slow the movements of phospholipids resulting in a gel-like membrane whereas relatively 

high temperatures speed movements too much, disrupting the laminar structure of the 



28 

 

membrane; 3) limitations on aerobic respiration posed by temperature, where low 

temperatures hamper mitochondrias from generating the ATP required for activity, and high 

temperatures cause ventilation and circulation to fall below the level to supply the 

mitochondria with sufficient oxygen.  

The relative influence of the factors described above for insect life likely depends on 

the thermal environment where species live. For example, by summarizing global scale data 

collected from various groups of predominantly marine water breathing but also of air 

breathing ectotherms, Portner (2002) argued that oxygen limitation may be the most plausible 

determinant of organisms’ thermal tolerances. However, Angilletta (2009) noted that this may 

not be true in heterogeneous environments where organisms can use anaerobic respiration to 

endure transient exposures to extremely high temperatures. Other studies, such as that of van 

der Have (2002) have shown that thermal limits on enzymatic activity can explain the thermal 

limits on embryonic and larval development of ectotherms. However, as stated by Angilletta 

(2009) determining the contribution of each factor to thermal sensitivity is difficult since 

thermal limits are probably the result of complex interactions at the biochemical, cellular and 

systemic levels. Despite such a complexity, there are two generalities that may be drawn from 

all these mechanisms: 1) there is a tradeoff between performance at high temperatures and 

performance at low temperatures, and 2) an increase in the performance breadth should cause 

a decrease in the maximal performance (this phenomenon is commonly referred to as a 

specialist-generalist tradeoff) (Huey and Hertz 1984, Gilchrist 1995, Angilletta 2009).  

Thermal sensitivity at the cellular level leads to sensitivities at the systemic and 

organismal levels as well, restricting fitness enhancing activities to a narrow range of 

preferred temperatures (Gilchrist 1995). Knowledge about thermal sensitivity on whole-

animal systems is ecologically more relevant than knowledge of the influence of temperature 

on cells or tissues. Understanding the influence of temperature on fitness allows analyses of 

geographic distribution, times of activity and competitive interactions of animals in relation to 

temperature (Huey and Stevenson 1979). Ecological modeling including organisms’ level 

response to temperature is a common approach for analyzing such information. 
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2. MODELING INSECTS’ ENVIRONMENTAL-RELATED PERFORMANCE 

Starfield and Bleloch (1986) defined a model as “any abstraction or representation of a system 

or process." In ecology, models are simplified representations of nature that help us to 

simulate and understand observed ecological phenomena (Angilletta 2009). These tools are 

widely used by ecologists to simulate organisms’ responses to environmental conditions (for a 

review see Worner 1991). Ideally, models should be built in the basis of previous 

observations and should be able to predict unobserved phenomena. When modeling the 

influence of the environment on organisms’ responses, the common approach is to fit 

functions or curves to observed data of responses in relation to some environmental gradient 

(Huey and Stevenson 1979). This allows subsequent estimation of responses under actual or 

theoretical conditions. Integrating several models explaining related mechanisms into a larger 

one allows the simulation of more complex phenomena (Angilletta 2009). For instance one 

may be able to simulate the life-history, phenology, population dynamics or distribution of a 

group of organisms across time under varying environmental conditions (Buffoni and 

Pasquali 2010). Constant improvement of computational capacities allow increasing the 

complexity of models and running them at larger scales of time and space (Logan et al. 2007, 

Régnière et al. submitted).  

2.1. Past, present and future of performance models  

The effects of environmental factors on insects have long interested scientists (Sanderson and 

Peairs 1913, Peairs 1914, Alpatov and Pearl 1929, Uvarov 1931, Janisch 1932, Talbot 1934, 

Dennis 1938, Cloudsley-Thompson 1956). Early investigations were mostly descriptive and 

fragmentary and did not allow developing generalizations (Sanderson and Peairs 1913, 

Uvarov 1931). In 1931, Uvarov wrote a monograph summarizing existing work on the 

influence of climate on insects (see reviews in Cook 1932 and Russel 1933). Uvarov 

recognized the complexity of studying the influence of climate on insects and maintained that 

it should forcefully rely on analytical methods. This author also stated that the influence of 

each climatic factor on each phase of an insect’s life should be studied independently. From 

that time on, a lot of work has been done concerning the climatic niche of insects. Much of 

this work has focused exclusively on temperature since it is recognized as the most important 

variable shaping insects’ life (Janisch 1932, Powsner 1935, Davidson 1944, Messenger and 

Flitters 1958, Butler et al. 1976, Sharpe and DeMichele 1977, Schoolfield et al. 1981, Worner 
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1992, Gilbert et al. 2004, Walters and Hassall 2006, Steigenga and Fischer 2007, Abril et al. 

2010). 

Organisms’ responses to environmental variables are commonly depicted with 

performance curves (Huey and Kingsolver 1989, Gilchrist 1995, Martin and Huey 2008, 

Angilletta 2009) which describe performance along a continuous environmental gradient. 

Angilletta (2009) defines performance as “any measure of an organism’s capacity to function, 

usually expressed as a rate or probability.” In the case of responses to temperature, these 

curves are commonly referred to as thermal performance curves. They share certain important 

properties like a unimodal shape, a negative skew and a finite breadth, and are commonly 

described with several parameters (Fig 1): 1) optimum temperature (Topt), or optimum 

temperature range, which corresponds to the temperature, or range of temperatures, that 

maximizes performance; 2) thermal breadth (Tbr) or performance breadth; 3) thermal limits 

which represent the minimum and maximum temperatures at which performance is greater 

than zero (Tmin and Tmax, respectively), and the maximal performance (Pmax) which defines the 

level of performance at the optimum temperature (Huey and Stevenson 1979, Huey and 

Kingsolver 1989, Gilchrist 1995, Angilletta 2009, Angilletta et al. 2010).  

 

Fig. 1. Thermal performance curve. Topt is optimum temperature where performance is maximized, Tmin and Tmax 

are minimum and maximum temperatures at which performance is greater than zero, Tbr is thermal breath and 

Pmax is maximal performance at the optimum temperature.  
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The most common measures of thermal performance are survival, development, 

growth, fecundity, locomotion, assimilation, and foraging (Gilchrist 1995, Angilletta 2009). 

All these variables respond rapidly (and usually reversibly) to changes in temperature 

(Angilletta 2009). Performance curves of the different measures differ from each other in their 

thermal optimum, breadth and limits of performance. More importantly, each measure 

contributes to fitness in a different way (for instance, survival contributes geometrically 

whereas development contributes additively) causing patterns of variation along thermal 

clines to differ slightly among the different measures of performance (Lynch and Gabriel 

1987, Gilchrist 1995, Angilletta 2009). A common approach to characterize thermal 

performance consists in relating temperature to performance with mathematical functions. 

Fitted functions to measures of temperature-related performance are known as performance 

models (Angilletta 2009). The different performance measures are usually described with 

different models and several different models, varying in complexity or biological 

significance may be used to describe the same performance measure (Bentz et al. 1991, 

Bonato et al. 2007, Zahiri et al. 2010). Here we will focus exclusively on survival, 

development, and fecundity, since those are the three performance measures considered in the 

rest of this study.  

2.1.1. Survival 

Observations of survival along temperature gradients usually present an inverted U shape, 

with low survival at high and low temperatures (van der Have 2002). The mechanisms 

causing thermal limits are most likely tied to enzymatic activity. Traditionally, mechanisms 

hampering survival at high temperatures were assumed to differ from those hampering 

survival at low temperatures. The former were thought to be related to irreversible 

denaturation of proteins and death, and the latter to zero activity of proteins by inactivation 

(Hochachka and Somero 1984). Work by van der Have (2002) suggested that both high and 

low thermal limits may be caused by inactivation of cell cycle proteins and that the inhibiting 

effect is symmetrical at the two temperature extremes.   

 Many researchers have documented the relationship between temperature and survival 

of ectotherms (see Angilleta et al. 2004 for a review). While some studies remain purely 

descriptive (Drent 2002, Abril et al. 2010), many have focused exclusively on thermal limits 

(Berrigan 2000, Hercus et al. 2000, Stillman and Somero 2000, Carrillo et al. 2005, 
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Bahrndorff et al. 2009), and only a few have adjusted models to survival data (Perez-Mendoza 

et al. 2004, Sporleder et al. 2004, Bonato et al. 2007). Régnière et al. (submitted) developed a 

model of survival that integrates both the effect of temperature on survival (a parabolic 

function), and the temperature dependent developmental time (see Chapter 2).   

 Population models require simulating insects’ dynamics over one or more generations. 

Thus one must be able to model survival over time, under varying temperature conditions. 

Since, as stated before, survival contributes geometrically to an organism’s total fitness (i.e. 

total fitness is the product of survival at all time intervals) one may calculate an individual or 

a group’s total life-time survival by multiplying survival probabilities during all time-steps 

(Lynch and Gabriel 1987, Angilletta 2009, Régnière et al. submitted) 

2.1.2. Development 

As the other performance measures, insect development occurs within a definite temperature 

range, with a lower threshold temperature – near which development asymptotically 

approaches zero (because insects often survive for long periods at cold temperatures with 

little or no development; e.g. during diapause) – and an optimum one of fastest development 

above which it declines abruptly to a lethal maximum temperature (Wagner et al. 1984). In 

the mid region of the temperature range a linear response occurs. From a biochemical point of 

view development process is a complex series of reactions involving numerous enzyme 

systems (Sharpe and DeMichele 1977). These enzymes are inactivated by extremely low or 

high temperatures and their reaction rates are temperature dependent and determine the rate of 

development of an organism. These responses may explain the observed form of temperature 

dependent development rates (Sharpe and DeMichele 1977). 

 Earlier approaches to model development considered only the linear portion of the 

curve to predict insect development times. This approach, known as a degree day model, is 

based on the work of several authors (Candolle 1855, Sanderson and Peairs 1913, Arnold 

1960) and calculates the duration of development by adding up the number of thermal units 

(degree-hours or days) above the lower threshold temperature until these accumulate to a 

specific total (Wang 1960). Although still widely used due to the simplicity to parameterize, 

and minimal data requirement for formulation, these types of models are only valid if 

temperatures do not fall outside the linear region of the organism’s thermal response (Wang 

1960, Régnière and Logan 2003). Moreover, the threshold temperatures are often determined 
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by extrapolating the straight line to the temperature axis, which causes the number of degree-

days required for complete development to be too low at temperatures near the lower 

threshold and too high at or above the optimum (Wagner et al. 1984). 

 The inadequacy of degree day models has long been recognized, and several authors 

have developed or used alternative approaches to model ectotherm development. For instance, 

Belehradek (1935, cited in Wagner et al. 1984) developed an exponential equation that 

became linear on a log scale. This model was used by Drooz and Shreuder (1972) to describe 

Elm spanworm (Ennomos subsignarius, Hübner) temperature related eclosion, but did a poor 

job at simulating response at extreme temperatures. Janisch’s (1932) model combined two 

exponential curves, the reciprocals of which describe the accelerating phase of development 

rate up to the optimal temperature and the decelerating phase beyond the optimum. This 

model was used with various degrees of success but has been criticized for computational 

difficulties (Huffaker 1944, Messenger and Flitters 1958). Development and use of non-linear 

functions became extensive in the 1970’s in response to the technological advances of 

computers (Stinner et al. 1975, Logan et al. 1976, Sharpe and DeMichele 1977) and a wide 

variety of functions have been developed ever since (Gilbert et al. 2004, Zahiri et al. 2010). 

Some models are more descriptive than others, and some even have parameters that can be 

interpreted biologically (Logan et al. 1976) or biophysically (Sharpe and DeMichele 1977, 

Schoolfield et al. 1981). All of these models aim at accurately describing the nonlinearity of 

development rates at temperature extremes and are required whenever simulations must cover 

temperatures over the full range of the developmental range function (Worner 1992, Régnière 

et al. submitted).   

 Describing development over time is often achieved with a rate-summation approach. 

This method assumes that the effect of temperature on development is additive and that time 

remains constant during small intervals of time. Thus development during a life-stage is 

calculated by adding (integrating) development rates over short time steps. Change of stage is 

assumed to occur when the sum attains the unity (Logan et al. 1976, Logan and Powell 2001, 

Régnière et al. submitted).   

2.1.3 Fecundity 

Insect reproduction is influenced by several factors including gonadal and nutritional status, 

mate availability, mating status, and female fecundity (Steigenga and Fischer 2007, Brent 
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2010). Of these, fecundity (total number of eggs laid per female during her whole life span) 

has been found to be influenced by temperature (Kim and Lee 2003). Exposure to extreme 

temperatures causes specific and irreversible damage to females’ reproductive system like 

lethal injuries to oocytes and ovarian development (Rinehart et al. 2000, Hance et al. 2007, 

Renault 2011). 

 Temperature related fecundity has been shown to present a bell shaped curve and has 

been modeled using non-linear or polynomial functions (Hilbert and Logan 1983, Shaffer and 

Gold 1985, Allen et al. 1995, Sporleder et al. 2004, Bonato et al. 2007). However, for 

population models it might be useful not only to describe the relationship between this 

variable and temperature, but also the rate of oviposition over time. This may be modeled by 

cumulating the number of eggs laid by females each time interval until they exhaust their 

reproductive resources (Kim and Lee 2003, Régnière et al. submitted).    

2.2. Choosing among potential performance models 

As described above, numerous models may be adjusted to performance data. Choosing which 

one to use is however not an easy task. Some arguments to select a model may relate to its 

biological realism or practical application (Worner 1992). One may also discriminate models 

based on the amount of variation described by each one (i.e. choosing the one with the highest 

R2). However, this last approach may lead us to choose a highly complex model that over-fits 

the data. A more elegant model selection method consists in the use of information theory 

(Angilletta 2006). Information criteria, such as the AIC (Akaike Information Criterion) or the 

BIC (Bayesian Information Criterion), rank candidate models based not only on their 

goodness of fit to the data, but also on their complexity (the number of parameters), thus 

avoiding the choice of excessively complex models (Schwarz 1978, Burnham and Anderson 

2002).  

2.3. Recent advances with performance models 

One very important application of performance functions may be the construction of 

population models that simulate insect life-history events, phenology or distribution over time 

under varying environmental conditions. One example of such models are cohort-based 

models which have been used for a long time to simulate dynamics of cohorts of individuals 

(group of insects that enters a stage during the same simulation time-step) (Curry et al. 1978, 
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Wagner et al. 1985, Régnière 1987, Logan 1988). In these models, cohorts age according to a 

rate summation equation (Logan 1988, Bentz et al. 1991, Logan and Powell 2001), and 

variability in developmental times is included by modeling development according to some 

probability distribution. Survival and oviposition of cohorts may also be included to simulate 

population dynamics over several cycles. The downside of cohort models is that in some 

cases the number of cohorts can become quite large, and, especially in unseasonal 

environments, where organisms present multiple overlapping generations, the juxtaposition of 

cohorts may become difficult to manage. Moreover, because individual traits are not 

distinguished, they are not as easily amenable to modeling evolutionary adaptation (Régnière 

et al. submitted). 

 Advances in computational power have allowed the development of individual-based 

models (IBM) which simulate the influence of environment temporal variability on the 

development, survival and oviposition of a collection of individuals (Buffoni and Pasquali 

2010). Each newly created individual is assigned its own traits, which allows it to go through 

successive life-stages at its own individual pace (Choi et al. 2006, Willis et al. 2006, Nehrbass 

and Winkler 2007). For example, individuals may be randomly assigned different values of 

deviation from mean development time for each life stage, according to some distribution, or 

females may be assigned some initial fecundity at random. Régnière et al. (submitted) 

propose modeling survival by drawing a number from a uniform probability and removing the 

individual if the number is larger than its survival probability during that time step. In spite of 

their high computational demands IBMs are becoming quite popular since they allow 

modeling complex behaviors, including natural selection by simulating transmission of traits 

from parent to progeny (Régnière et al. submitted). Such an approach would allow 

understanding and predicting the evolution of thermal performance curves, which would 

greatly contribute to the progress of evolutionary thermal biology (Angilletta 2009). 

Furthermore, mounting evidence of genetic changes in response to recent, rapid climate 

change (Bradshaw and Holzapfel 2006, Kearney et al. 2009) emphasizes the importance of 

simulating the evolution of climate-related traits. This is especially the case for insects which 

have been shown to evolve faster than other groups (Bradshaw and Holzapfel 2006). 

 Population models driven by climatic variables such as cohort models or IBMs are 

powerful tools for simulating insect life-history over wide spatial and temperature scales. 
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These models allow assessing the level of success of populations across a landscape, and 

anticipating extinctions or eruptive population behaviors that may have strong impacts on the 

natural or agricultural landscapes where populations reside. These tools are becoming a 

popular component of pest-risk assessments both under current climatic conditions or under 

climate change scenarios (Jarvis and Baker 2001, Venette and Gould 2006, Logan et al. 2007, 

Venette et al. 2010).   

 Even though the necessary tools for successfully modeling insect’s population 

dynamics and distribution seem to be ample and readily available, work on this subject in the 

tropics has lagged behind that of other regions. Given the vulnerability of tropical regions to 

many environmental threats related to our thematic, such as climate change (Bradley et al. 

2006), increased frequency of extreme climatic events (IPCC 2007), and increasing 

occurrence of invasive insects (Nwilene et al. 2008), current research should focus its efforts 

on improving the knowledge about insect life in these regions and developing models that 

allow understanding and anticipating the risks associated with them. 

2.4. Merging performance and spatially-explicit models 

The spatial component of species dynamics (e.g., dispersal, site-specific conditions) is of 

prime importance for management aimed at controlling or conserving species (Jongejans et al. 

2008). Spatial population models integrate information about species’ demography and 

dispersal allowing predictions to be made not only about the rate but also the direction of 

spread (Jongejans et al. 2008, Cacho et al. 2010). There is a wide range of spatial population 

models, with varying levels of detail both in population dynamics – some models simulate 

dynamics in an unstructured way (Skarpaas and Shea 2007) while others specify age- or 

stage-structure (Neubert and Caswell 2000, Hunter and Caswell 2005) – and in spatial 

structure – some models consider an homogeneous landscape (Travis et al. 2011) whereas 

others simulate dynamics in a heterogeneous space (Moilanen 1999, Hanski et al. 2000, 

Herben et al. 2006, Carrasco et al. 2010).  

 Many organisms experience a world that is heterogeneous and patchy, and their 

population dynamics may be strongly influenced by such heterogeneity (Cadotte et al. 2006, 

Jongejans et al. 2008). Simulating spread in those types of landscapes or regions thus greatly 

benefits from realistic inclusion of spatial structure (Sebert-Cuvillier et al. 2008, Vinatier et 
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al. 2011). Numerous types of models simulate space explicitly. These include patch-based 

metapopulation models (Moilanen 1999, Hanski et al. 2000), stochastic patch occupancy 

models (SPOMs; Moilanen 2004), individual based models (IBMs, Goslee et al. 2006, 

Nehrbass et al. 2007, Harris et al. 2009, Carrasco et al. 2010, Travis et al. 2010, Vinatier et al. 

2009, Travis et al. 2011), and cellular automata (CA) models (Soons et al. 2005, Herben et al. 

2006, Prasad et al. 2010). CA models can simulate space with the use of geographic maps, 

making them not only spatially explicit, but spatially realistic (Harris et al. 2009). These are 

of particular use when one is interested in understanding species’ dynamics in landscapes 

with a particular configuration (Jongejans et al. 2008). Both CA and IBM models are able to 

incorporate demographic complexity although the latter in much more detail since they 

contain information about each individual in the population (Nehrbass et al. 2007, Jongejans 

et al. 2008). These two types of models are of great use to simulate and understand population 

and spread dynamics in highly variable regions like the Tropical Andes where dynamics are 

not only influenced by environmental heterogeneity but also by socially- induced 

heterogeneity. 

 

3. INSECT DISTRIBUTION MODELING IN TROPICAL HIGH ALTITUDE 

LANDSCAPES  

3.1. What are the challenges? 

3.1.1. Assessing the influence of human impacts  

Tropical regions lie between 20° N and 20° S of latitude. Despite the great diversity of 

environments among them, tropical high altitude regions share attributes that distinguish them 

from those of temperate zones. Among them, unlike high altitude landscapes in temperate 

regions, which are commonly regarded as relatively pristine places, tropical mountains have a 

long history of human occupation and impact. Andean landscapes, for example, have 

supported millions of people and vigorous societies throughout millennia (Young 2009). They 

have thus been exposed for a long time to chronic anthropogenic disturbances from fires, 

firewood harvesting, grazing, and cutting to establish agricultural plots (Young and Lipton 

2006, Nyssen et al. 2009). Human impacts cause dramatic changes in tropical mountains. 



38 

 

Seeking short-term increase in agricultural production, farmers tend to augment pressure on 

the land, for example through reduced fallowing, removal of vegetation between cropland, 

and conversion of forest and woodlands on steep slopes into rangeland and marginal arable 

land (Nyssen et al. 2009). These impacts have further fragmented the inherently complex 

tropical mountains transforming them into composite mosaics of cultivated fields with 

different crops at several stages of maturation (Young and Lipton 2006, Dangles et al. 2008). 

The risk related to invasive pests in tropical mountains is higher, first because more species 

can be “packed” along altitudinal gradients and second, because increased commercial 

exchanges, with poor sanitary controls allow invasive species to propagate across cultivated 

landscapes (Dangles et al. 2010). Understanding and forecasting invasive distribution and 

spread is thus a timely issue in these landscapes that should forcefully account for the 

influence of anthropogenic impacts on species’ dynamics. 

3.1.2.  Accounting for climatic heterogeneity 

Climatic variability in tropical mountains strongly influences species dynamics and should be 

considered when modeling species distribution in these regions. Unlike temperate zones, 

seasonal variations in temperature are small (Denlinger 1986, Stiling 2002, Vazquez and 

Stevens 2004, Dangles et al. 2008, Angilletta 2009, Grimbacher and Stork 2009) and seasonal 

markers such as day length variation are absent. Therefore, population dynamics of organisms 

from tropical regions differ from those from temperate zones. For example, adaptations like 

temperature or day-length induced seasonality have not been observed in tropical species. 

Also, unlike temperate species, that usually synchronize their life-cycle events with seasonal 

cycles, tropical species commonly present several overlapping generations per year with no 

temperature-related synchronization in events like emergence or egg hatch (Denlinger 1986). 

Another important characteristic of these landscapes is the clinal decrease in air temperature 

related to increase in altitude (Stiling 2002, Angilletta 2009). This contributes to the high 

spatial heterogeneity characteristic of tropical mountains and causes thermal limits and 

population dynamics of species to be defined spatially rather than seasonally (Dangles et al. 

2008). Another important feature of tropical mountains is that daily variations in temperature 

are usually pronounced and are often much greater than yearly variation in mean monthly 

temperature (Denlinger 1986). The thermal environment experienced by insects in these 

regions is therefore one of strong temperature fluctuations. Knowledge about insect responses 
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to this type of temperature regime is thus important for more robust and realistic predictions 

of their dynamics. 

3.1.3. Working with scarce data 

A very important characteristic shared by tropical regions, which hinders development of 

distribution models, is that the majority of countries located in them are developing countries 

(see Dangles et al. 2009a). Due to less developed scientific research information concerning 

insects’ responses to their environment is scarce and many times incomplete. Many studies 

reporting on experiments remain descriptive and lack necessary information such as sample 

numbers or standard deviations (Gamboa and Notz 1990, Notz 1995, Torres et al. 1997). 

Much of the existing information has not been published and has remained as “gray” 

literature, virtually unavailable for researchers in need of such information. The low number 

of weather stations in tropical regions causes climatic data to be scarce. Given the high 

topographic heterogeneity of tropical mountains, accurate weather interpolation to whole 

regions may be difficult. This lack of weather data also increases the already high uncertainty 

of climate change predictions (Buytaert et al. 2010). Additionally, information regarding land-

use and land-use changes is usually outdated and existing maps usually have a very low 

resolution. Finally, data on presence and absence of pests, necessary to evaluate model 

predictions is commonly lacking. All this demands great effort for modelers either to find 

existing information or to develop it themselves in order to construct adequate models and the 

subsequent validation of model outputs.  

3.1.4. Building distribution maps under current and future climate 

Distribution models are commonly used to build pest risk maps which describe the probability 

of pests invading or establishing across a region or landscape (Venette et al. 2010). Building 

these maps at a regional scale in tropical mountains is usually faced with all or some of the 

abovementioned challenges. Realistic forecasting of species presence, for example, should 

account for the high heterogeneity of these regions, both temporally and spatially. Information 

needed to build these maps includes data about species responses to the environment, detailed 

information about climatic variability and actual pest distribution (Jarvis and Baker 2001, 

Logan et al. 2007). Due to the high heterogeneity of mountain regions, the possible adaptation 

of populations to different environmental conditions and the changes in genetic diversity of 



40 

 

invasive species (Torres et al. 1997, Sakai et al. 2001) distribution models should ideally be 

parameterized with data from several populations from different geographic locations.  

 Climatic changes are predicted to increase in the future, supposedly to a greater extent 

in mountainous regions (Still et al. 1999, Bradley et al. 2006, Urrutia and Vuille 2009, 

Buytaert et al. 2010). Therefore, adaptation to future threats posed by pests must include 

predictions of future climate change. However, as mentioned above, uncertainties related to 

these types of predictions in regions where even actual weather data is scarce are even higher 

(Buytaert et al. 2010). Pest risk maps of future threats should thus consider several climate 

change scenarios and, ideally several climate change models.   

4. MODELLING POTATO TUBER MOTH INVASION IN THE TROPICAL ANDES 

The present study aimed at modeling the spread and distribution of three invasive species of 

Potato Tuber Moth (Lepidoptera, Gelechiidae) in the North Andean region. Bellow we 

discuss the general context that surrounds this study.  

4.1. The Tropical Andes 

The Tropical Andes are located in Northwestern South America and encompass an area of 2 

033 000 km2 (area over 1000 m.a.s.l., Nyssen et al. 2009) in the countries of Colombia, 

Ecuador, Peru and Bolivia (Plate 1). This region is characterized by strong  environmental 

gradients mainly associated with changes in elevation (mountaintops can exceed 6000 m.a.s.l. 

with adjacent valley bottoms 3000–4000 m below) (Young and Lipton 2006, Young 2009). 

Spatial heterogeneity in the tropical Andes landscapes is indeed remarkable and is probably 

the most important feature shaping wildlife in this region (Young 1997).    

 Even though the Tropical Andes lack a clear seasonality in temperature, this region 

does present temporal variability in environmental conditions mainly related to variations in 

precipitation. This variation is caused by various factors, the most important of which is El 

Niño Southern Oscilation (ENSO) which causes annual or sometimes by-annual or even 

decadal oscillations causing increased rain or draught depending on the location (Young 

2009, Poveda et al. 2011, Williams et al. 2011). Precipitation patterns may be further 

confounded by other mechanisms including the passage of the inter-tropical convergence 

zone (ITCZ, the area near the equator where winds originating in the northern and southern 

hemispheres come together), and the influence of moisture-laden winds coming from the 
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Amazon (Poveda et al. 2011). Precipitation patterns in the Tropical Andes are thus quite 

complex and difficult to predict and contribute to the high heterogeneity of the landscapes. 

 Like other tropical mountain regions, Tropical Andean landscapes have been intensely 

fragmented by long-term human influences, mainly related to agricultural practices (Young 

and Lipton 2006) that have transformed the region into a complex mosaic of cultivated fields 

(Plate 2). Agriculture is an important component of the economies of countries in the North 

Andean Region with many people depending directly or indirectly on agricultural activities 

(FAO 2011). Most farmers live in poverty and many are subsistence oriented with median to 

small farms (Plate 3). Productivity in the Tropical Andes faces many challenges associated 

with climate change and extreme events, limited access to technology and infrastructure 

(related to both elevated costs and remoteness of many sites), the low margins of gains related 

to the scale of operation, low levels of people’s education, and socio-economic and 

institutional changes that have increased the pressure on natural resources, weakened the 

internal social organization and caused cultural erosion in the Andean society (Perez et al. 

2010).  

 The emergence and propagation of agricultural pests constitute important threats to 

agriculture in the region. Losses caused by them are estimated to approach 60-70 % in 

available crop production and storage in developing countries (Nwilene et al. 2008). Climate 

change is believed to increase the risk related to pest species in the North Andes for at least 

two reasons. First, as stated before, temperature increase is expected to be greater in 

mountainous regions than in lowlands (Hodkinson 2005), and the long thermal gradients 

along mountains will potentially allow the persistence of microclimatic refuges that will 

eventually permit the presence of a higher number of pest species along the elevation gradient 

(Bale et al. 2002, Hagen et al. 2007, Dangles et al. 2008). Second, climate change will likely 

have indirect effects on the distribution of pest species through the upward shift in the 

agricultural frontier (Sarmiento 2002). Increase in temperature allows farmers to clear new 

land at higher altitudes to plant their crop, thus allowing pest species to also reach higher 

altitudes.      

4.2. The Potato Tuber Moth complex 

After cereals, potato is the most important food in the world. Potatoes have high nutritional 

values producing more usable energy than any other crop per space and time unit. Once 
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boiled a medium sized potato provides half of the daily recommended values of vitamin C for 

an adult, as well as important quantities of iron, potassium, zinc, vitamin B and many 

essential microelements. It is therefore not surprising that potato is considered an extremely 

valuable tool in the fight against world hunger (Devaux et al. 2010).  

 Potatoes are produced in almost every country and each year more than 300 million 

metric tons are produced. Only a third of this production comes from developing countries, 

where potatoes are mainly grown on subsistence smallholdings (Radcliffe 1982, Keller 2003). 

In Tropical South America potatoes are grown in the Andes where they constitute central 

elements of household and national economies, contributing with more than 7 % of the 

countries’ Gross Domestic Product (GDP) (Devaux et al. 2010). Also, potato is a very 

important source of employment and salary in the region with more than 820,000 producers in 

Ecuador, Peru and Bolivia. Although being the center of origin of potatoes, the tropical Andes 

contribute with only 1.38 % of world production. Lately, production has increased in this 

region, but yield is still considerably lower than the world average. Farmers face constant 

problems with potato production, some of them related to climate (such as frost, hail or 

draught) or economics of potato production, but mostly to pests and diseases which have been 

estimated to cause losses in production of 32% (Pumisacho and Sherwood 2002, Keller 

2003).  

 The potato tuber moth (PTM) complex (Lepidoptera, Gelechiidae) represents one of 

the most important threats to potato production in tropical and subtropical regions. Three 

species of this complex Phthorimaea operculella (Zeller), Symmetrischema tangolias (Gyen) 

and Tecia solanivora (Povolny) (Plate 4), have been invading agricultural landscapes of the 

North Andean region within the last 30 years through successive introductions from different 

origins. Losses in yield caused by these species in the potato fields of the North Andes are 

considerable, especially in the poorest regions (Dangles et al. 2008).  

 P. operculella is thought to have originated in the tropical mountainous regions of 

South America and is now a cosmopolitan pest that can be found in almost all potato 

production areas worldwide (Radcliffe 1982, Rondon 2010). It is considered to be the most 

damaging insect pest of potato in the developing world (Keller 2003). S. tangolias originated 

in the Andes of Peru and Bolivia and has been moving north to Ecuador, where it was first 

reported in 2001. T. solanivora is native to Guatemala and the southernmost part of Mexico. It 
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has been successively introduced into Cost Rica, Venezuela, Colombia and Ecuador, where it 

arrived in 1996 (Puillandre et al. 2008, Torres-Leguizamon et al. 2011). In South America, 

Ecuador is the southernmost limit of distribution of this species that has apparently been 

unable to invade potato fields of Peru.  

 PTM females lay their eggs on rough surfaces such as soil, potato tuber eyes, or leaf 

undersurfaces. After hatch, larvae dig into the soil until the find a potato tuber where they 

burrow deep tunnels in order to feed (Plate 5). S. tangolias and P. operculella larvae can also 

feed on stems and leaves of potato plants. When fully grown, larvae leave their host and 

pupate in the soil near the bases of plants, in leaf remains, near stored potatoes, or in other 

suitably sheltered sites (see Plate 6 for a graphic description of PTM life-cycle). The co-

occurrence of the three species in the same potato field, sac, or potato storage structure has 

been observed only in Southern Colombia and Ecuador (Dangles et al. 2008). Information on 

the interaction of the three species is scarce. A recent study by Dangles et al. (2009b) found 

that damage to the crop was greater when the three species were present than that predicted 

from the added effects of each pest alone, and that this produced significant increases in pupal 

biomass and fecundity. Additional experiments have shown either facilitation or competition 

between the three species, depending on which one is initially present and on the sequence of 

infestation (Mazoyer 2007).  

 Temperature has been shown to be the main driver of PTM dynamics (Keller 2003, 

Sporleder et al. 2004, Dangles et al. 2008). Climatic conditions of the northernmost part of the 

Tropical Andes (e.g. Ecuador) present very little seasonal variation. This allows potatoes to be 

grown all year round, and causes the agricultural landscape of the highlands to be made up of 

a mosaic of potato field at various stages of maturation. This permits PTM to survive and be 

active all year round since they have constant favorable conditions in terms of climate and 

food resource. In this part of the Tropical Andes PTM distribution and population dynamics 

are thus defined spatially rather than seasonally (Dangles et al. 2008). As one moves farther 

south to Peru and Bolivia, seasonality becomes slightly more marked with potato production 

sometimes limited to a few months each year (i.e. in Puno and Cusco in southern Peru, potato 

is cultivated between May and September, Devaux et al. 2010). In these more southern 

landscapes PTM distribution and dynamics are influenced by temperature, rainfall and by 

food availability. Nevertheless, temperature has been shown to be of prime importance for 
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these insects’ life-cycle dynamics and has been shown to produce accurate phenology models 

(Sporleder et al. 2004, Dangles et al. 2008). 

 PTM infestation is usually higher in traditional potato storage structures (tubers 

heaped under a basic shelter) where re-infestation occurs and frequently the entire stored 

potato stock is destroyed. These structures offer optimal conditions for moth development, 

such as protection from coldest temperatures and against rainfall (Keasar et al. 2005), and 

explain the survival of P. operculella in places with cold winters like Northwest U.S.A. or 

central Europe (Rondon 2010). These human constructions seem thus determinant for PTM 

survival and establishment even in places with unsuitable climate. 

 Efficient management of PTM in the North Andean region is in most cases inadequate 

due to limited access to technology and funding and low levels of people education. 

Furthermore, transfer of knowledge on integrated pest management is hampered by the high 

inaccessibility of some villages or potato fields. Andean farmers and IPM technicians are in 

urgent need of new tools to enhance their capacity to fight against these pests. Recent 

advances in empirical data analysis and modeling allow developing approaches to better 

understand and predict pest dynamics and the level of risk of the landscapes to their invasion 

and establishment. Transferring this information to technicians is of prime importance to 

strengthen the resilience of the whole region to pest problems; technicians have indeed a key 

role in transferring advances in scientific knowledge to farmers. 

4.3. The INNOMIP project 

This PhD work has been realized within the INNOMIP project (INNOvative approaches to 

Manage Insect Pest risks in changing Andes), led by the French Institute for Research and 

Development (IRD) in collaboration with the Entomology Laboratory of the Pontifical 

Catholic University of Ecuador (PUCE). This program was developed to improve the capacity 

of North Andean farmers to fight against PTM and other agricultural pests and is a joint effort 

between several institutions of Ecuador, Peru and Bolivia concerned with integrated pest 

management (see www.innomip.ird.fr for further details).  

 This work benefited from being part of such a project mainly through the availability 

of data. Such data was in some cases used to parameterize our models. For instance, long term 

temperature monitoring in the field and in potato storage structures with data-loggers 
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(HOBBO, temperature and humidity, Plate 7), allowed us to determine the level of 

temperature buffering inside potato storage structures, which was included as a human 

influence factor driving PTM dynamics in one of our models (see section 4.4.1). The 

INNOMIP project also established a monitoring program of PTM in Ecuador, Peru and 

Bolivia (Plate 8). Moths were monitored with pheromone traps at several sites along gradients 

of altitude from the lower level of potato crop up to the agricultural frontier. Individual 

collections were realized every three weeks for 3 years. Data issued from this monitoring 

were useful for validating our modeling outcomes.  

4.4. PTM distribution modeling: overcoming the challenges 

We faced the challenges described in section 3 when modeling PTM distribution. Several 

strategies were developed to overcome these difficulties and are described in 4 articles written 

during this PhD, which correspond to the four chapters of this dissertation: 

1) Modeling invasive species spread in complex landscapes: the case of potato moth in 

Ecuador 

As stated before, landscapes in the Tropical Andes have been severely fragmented by human 

activity. In order to better understand the influence of this human-induced heterogeneity we 

developed a spatially-explicit, cellular automata model that simulated the spatio-temporal 

dynamics of T. solanivora’s invasion into a small valley in central Ecuadorian Andes. We 

chose this species since we disposed of data about its propagation into the valley which 

allowed us to evaluate propagation predicted by our model. This model allowed us to include 

detailed information about the landscape and to determine the relative influence of 

environmental versus social landscape heterogeneity on moth propagation. We focused on 

two human practices that influence PTM propagation: 1) the presence and distribution of 

potato storage structures that modify local thermal environment (Dangles et al. 2008, 

Appendix D), and 2) passive long- distance dispersal (LDD) of moth in human vehicles that 

allow moth to attain far away sites, unreachable with their intrinsic flight capacity (EPPO 

2005, Dangles et al. 2010). Even though with this model we exclusively simulated T. 

solanivora’s propagation it may be used for the other two PTM species or for any invasive 

species for which one has mechanistic understanding about its basic environmental-related 

dynamics (survival, development, fecundity).  
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2) Modeling insect oviposition in heterogeneous thermal environments: insights from 

potato tuber moth in the tropical Andes 

Thermal heterogeneity of the tropical Andes may greatly influence PTM dynamics. It has 

been shown that insects respond differently if exposed to constant or fluctuating temperature 

regimes, and accounting for these different responses may be of great importance for 

enhancing accuracy and realism of pest dynamics models (Gilchrist 1995, Davis et al. 2006, 

Adamo and Lovett 2011). Oviposition is one of the main components of insects’ fitness and 

population dynamics (Berger et al. 2008) and is highly influenced by temperature. In this PhD 

we were interested in understanding the influence of constant and fluctuating temperatures on 

the oviposition dynamics of the three species of PTM. For this, an oviposition rate model 

developed with data at constant temperatures was used to simulate dynamics under both 

constant and fluctuating temperature regimes. In addition, we ran our simulations under real 

temperature regimes measured in the field and in storage structures located at various 

altitudes. The aim of this was to compare the influence of higher (in the field) and lower (in 

storage structures) temperature variability on the oviposition of PTM.   

3) Modeling temperature-dependent survival with small data sets: Insights from potato 

pests in the tropical Andes 

As stated before limited or small data sets are common caveats for distribution modeling of 

many agricultural pests in tropical regions. Successfully simulating pests’ temperature-related 

responses requires an accurate estimation of their dynamics, especially near threshold 

temperatures (Angilletta 2009). This is of particular importance in places, like the Tropical 

Andes, where temperatures usually approach lower lethal extremes. Models capable of 

simulating lethal effects of extreme temperatures, even when parameterized with limited data 

sets, seem thus of great importance for population modeling in those cases. In this PhD we 

compared the ability of three approaches to model PTM survival. We were particularly 

interested in assessing the behavior of the models given a small data set that did not cover the 

whole temperature range. Accurately representing the physiological limits of species may be 

of particular importance in places like the Tropical Andes (and probably in other tropical 

regions), where adequate pest management is urgent but data are scarce.       
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4) Pest risk mapping in highly heterogeneous regions: The case of Potato Tuber Moth in 

the Tropical Andes 

Pest risk maps are extremely useful tools employed by management programs (Venette et al. 

2010) and are urgently needed in the Tropical Andes to improve the capacity of farmers and 

stakeholders to fight the increased threat posed by agricultural pests. A common approach for 

building these types of maps is to use the outputs of phenology models to assess climatic 

suitability of the region for pest invasion and/or establishment (Jarvis and Baker 2001, Logan 

et al. 2007). In this study we constructed a model that simulated PTM temperature-related 

survival, development and oviposition rate through successive generations under daily 

temperature regimes. Outputs of this model were then used to evaluate the level of risk 

associated with PTM across the region. Constructing such maps at this large scale proved 

challenging for several reasons. First, accurate generation of daily temperature regimes 

through interpolation of weather station data was difficult due to the scarcity of stations and to 

high topographic heterogeneity. Also, we were not able to include human-induced 

heterogeneity into this model due to lack of data on a regional scale. As evidenced by the 

Cellular Automota model, such information is necessary for improving model predictions. 

Finally, the lack of temperature-response data from populations of PTM from several 

geographic regions did not allow our model to accurately simulate the distribution of the 

species in some parts of the region. This may be due to the fact that populations may be 

adapted to local weather conditions or that changes in genetic diversity (i.e. genetic bottle 

necks) may have caused changes in populations’ responses to temperature (Puillandre et al. 

2008, Torres-Leguizamon et al. 2011). All this suggests future lines of work regarding pest 

risk mapping in tropical regions that would improve the reliability of predictions.  Since 

climate changes are predicted to intensify in the future in the high Tropical Andes (Bradley et 

al. 2006) we ran our model under several climate change scenarios. Such simulations allowed 

us to make predictions about the future risks related to PTM across the region and about the 

expected shifts in the distribution ranges of the three species. 
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Plate 1. Map of the North Andean Region, showing zones 1000 m.a.s.l. which 
correspond to potato production zonescorrespond to potato production zones.
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Plate 2. Photograph of a cultivated landscape in the North Andes showing 
the complex mosaic of cultivated fields and sparse forests.

Plate 3. Farmers from a small valley in the Central Ecuadorian 
Andes during potato harvest.
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a. b. c.

Plate 4. Larvae and adults of a) Phthorimaea operculella, b) Symmetrischema tangolias , 
and c) Tecia solanivora

a. b.

Plate 5 a) T solanivora larva living inside a potato tuber and damaged potatoPlate 5. a) T. solanivora larva living inside a potato tuber, and damaged potato 
with galeries made by PTM larvae.
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Pl 6 PTM lif lPlate 6. PTM life cycle

Plate 7. Temperature/humidity data-logger located next to a potato field 
in the Ecuadorian Andes.
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a.

b. c.

2850 m.a.s.l.2580 m.a.s.l.
d. e.

3550 m.a.s.l.3050 m.a.s.l.

Plate 8. Moth monitoring at several sites in Central Ecuador along an altitudinal 
gradient. a) Shows the  pheromone traps aligned in a potato fields. b-e show four 
different sites were monitoring was established.  
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a. 

b. 

Plate 9. Agricultural landscape in the central Ecuadorian Andes. a) 2D view 
showing temperature variability across the landscape and the diversity of crop 
within a plot of 1 km2. b) 3D view of the same landscape showing the high
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within a plot of 1 km .  b) 3D view of the same landscape showing the high 
topographical heterogeneity of agricultural landscapes in the Ecuadorian Andes.
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Abstract Tropical mountains have a long history of

human occupation, and although vulnerable to bio-

logical invasions, have received minimal attention in

the literature. Understanding invasive pest dynamics

in socio-ecological, agricultural landscapes, like the

tropical Andes, is a challenging but timely issue for

ecologists as it may provide developing countries with

new tools to face increasing threats posed by these

organisms. In this work, road rehabilitation into a

remote valley of the Ecuadorian Andes constituted a

natural experiment to study the spatial propagation of

an invasive potato tuber moth into a previously non-

infested agricultural landscape. We used a cellular

automaton to model moth spatio-temporal dynamics.

Integrating real-world variables in the model allowed

us to examine the relative influence of environmental

versus social landscape heterogeneity on moth prop-

agation. We focused on two types of anthropogenic

activities: (1) the presence and spatial distribution of

traditional crop storage structures that modify local

microclimate, and (2) long-distance dispersal (LDD)

of moths by human-induced transportation. Data from

participatory monitoring of pest invasion into the

valley and from a larger-scale field survey on the

Ecuadorian Andes allowed us to validate our model

against actual presence/absence records. Our simula-

tions revealed that high density and a clumped

distribution of storage structures had a positive effect

on moth invasion by modifying the temperature of the

landscape, and that passive, LDD enhanced moth

invasion. Model validation showed that including

human influence produced more precise and realistic

simulations. We provide a powerful and widely

applicable methodological framework that stresses

the crucial importance of integrating the social

landscape to develop accurate invasion models of pest

dynamics in complex, agricultural systems.
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Introduction

Biological invasion success depends on a sequence of

complex interactions between the invader and the

recipient ecosystem (Richardson and Pysek 2006).

Physical and biological characteristics of landscapes

affect their invasibility (i.e. their susceptibility to

colonization and establishment of invaders, Davies

et al. 2005). Mountain ecosystems are characterized

by a high heterogeneity and strong environmental

gradients (Körner 2007) that influence the probability

of invasion by non-native organisms, especially of

ectotherms such as insects (Dangles et al. 2008). High

elevation, associated with harsh environmental con-

ditions, high isolation, and low human population

densities, makes mountainous environments less sus-

ceptible to invasions (MA 2003). However, changes in

these patterns, notably due to anthropogenic activities,

may reduce mountains’ resistance to non-native

spread (Pauchard et al. 2009).

Unlike the more pristine temperate mountains,

mountains in the tropics are commonly subject to

human occupation and disturbance, and are often

dominated by land uses associated with agriculture

(Nyssen et al. 2009). Although highly vulnerable to

invasions, scientific studies on the dynamics of exotic

spread in these ecosystems are rare. Most of the

literature comes from temperate regions, but patterns

observed there can seldom be extrapolated to the

tropics where an unmarked seasonality causes daily

climate variations to be more important than yearly

ones and allows organisms to be active all year round

(Dangles et al. 2008). Understanding invasive pest

dynamics in these ecosystems is a timely issue for

ecologists, as it may provide developing countries

with new tools to face increasing threats posed by

these organisms. Simulating non-native spread in such

heterogeneous environments, while accounting for the

influence of anthropogenic activity, is a challenging

task which forcefully necessitates a landscape per-

spective, capable of exploring population dynamics

both temporally and spatially (Sebert-Cuvillier et al.

2008).

An increasingly growing range of methodologies

are available for describing population spread (for

reviews see Hastings et al. 2005 and Jongejans et al.

2008). Spatial structure has been integrated into

several types of models, such as patch-based meta-

population models (Moilanen 1999; Hanski et al.

2000), stochastic patch occupancy models (SPOMs;

Moilanen 2004), individual based models (IBMs;

Goslee et al. 2006; Nehrbass et al. 2007; Harris et al.

2009; Carrasco et al. 2010; Travis et al. 2010; Travis

et al. 2011), and cellular automata (CA) models

(Soons et al. 2005; Herben et al. 2006). An advantage

of IBMs and CA is that they may integrate spatial

heterogeneity, stochasticity and ecological processes,

allowing predictions to be made about the direction

and the rate of spread (Jongejans et al. 2008; Cacho

et al. 2010).

The general ecological theory behind invasion

processes is relatively well understood (Cadotte

et al. 2006). Lately there has been great progress in

simulating the spatial spread of invasive organisms

(Harris et al. 2009; Anderson et al. 2010; Carrasco

et al. 2010; Miller and Tenhumberg 2010; Shea et al.

2010; Travis et al. 2011), but several methodological

challenges remain to effectively model these pro-

cesses in complex socio-ecological landscapes in the

tropics. In particular, few attempts have been made to

combine, in a single approach, various human-med-

iated effects on the spatio-temporal propagation of an

invading pest population and to quantify their relative

importance (but see Prasad et al. 2010 in North

America). Even scarcer are the field data, especially in

tropical countries, required to validate the dynamics in

invasion processes. In this contribution we address the

issue of modeling exotic pest invasion in the tropical

Andes, a region transformed by anthropogenic sys-

tems into a mosaic of agro-ecosystems at different

stages of succession and different levels of human

influence (Ellenberg 1979). Propagation of invasive

species may be facilitated by intensified road con-

struction that reduces the naturally high isolation and

low connectivity of mountain environments (Pauchard

et al. 2009). In our case, road rehabilitation into an

isolated valley constituted an exceptional natural

experiment to study the propagation into a previously

non-infested landscape of the potato tuber moth (Tecia

solanivora, Povolny, Lepidoptera: Gelechiidae).

Actual moth propagation data obtained through par-

ticipatory monitoring (Dangles et al. 2010) suggested

that the speed of the invasion in the valley was not

possible through diffusion dispersal only, given that

tuber moths are weak fliers (Cameron et al. 2002;

Mesı́as and Dangles, pers. obs.). The specific aim of

our study was therefore to investigate the role of

human activity on the spatio-temporal invasion
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dynamics of an emerging agricultural pest. For this,

we employed a spatially explicit, CA model that

accounted for the influence of crop storage structures

that modify the thermal environment for the pest

(Dangles et al. 2008) and of passive, long-distance

transport of insects in human vehicles. Our study

showed how pest colonization and propagation on

mountainous agricultural landscapes in the tropics are

influenced by these human activities, and that they

should be acknowledged when designing pest man-

agement strategies. While we exclusively focus on

potato moths in the tropical Andes in this paper, our

approach is applicable to a much wider geographic

range (most agricultural ecosystems) and to introduc-

tions of other ectothermic organisms.

Materials and methods

Study organism and site

The Guatemalan potato tuber moth, Tecia solanivora, is

an invasive pest whose larvae attack exclusively Sola-

num tuberosum L. tubers both in the field and in potato

stocks. T. solanivora has been successfully invading the

northernAndeswithin the last 30 years (Puillandre et al.

2008). During the last decade it has been considered one

of the major pests for potatoes in Central American and

Northern South American countries (Dangles et al.

2009). Infestation is often highest (up to 90%) in

traditional potato storage structures (tubers heaped

under a basic shelter), which offer optimal conditions

for moth development (Dangles et al. 2008).

We studied the spatio-temporal expansion of T.

solanivora in the valley of Simiatug (Central Ecuador,

Fig. 1a) which constitutes a prime example to under-

stand species invasion dynamics. Before 2005 moth

introduction and propagation into the valley was

virtually impossible because of two reasons. First, it is

surrounded by large areas of natural páramos (herba-

ceous ecosystems of high altitude, mainly above

3,800 m) and natural or cultivated forests, all unsuit-

able for moth survival (Fig. 1b). Second, due to the

lack of roads, commercial activities with villages

outside the valley were limited. In 2006 road sections

from Guaranda northward to Salinas were rehabili-

tated enhancing commercial exchanges and allowing

T. solanivora’s arrival and propagation (Dangles et al.

2010) (Fig. 1b).

Altitudes of the Simiatug valley range from 2,800

to 4,250 m (Fig. 1c). Its climatic conditions are typical

of the Ecuadorian Andes where mean temperatures

vary more with altitude than with season (Fig. 1d)

(Dangles et al. 2008). Diurnal temperatures vary

dramatically and the pattern of hot days and cold

nights overshadows temperature variations through

the year. Rainfall also shows little seasonality and

varies on a local basis (see climate graphs in Dangles

et al. 2008, Appendix A, http://www.esapubs.org/

archive/appl/A018/062/appendix-A.htm). Such stable

climatic conditions permit potatoes to be grown all

year, and cause the agricultural landscape to be made

up of a mosaic of potato fields at various stages of

maturation. This, along with the presence of stored

potato tubers in traditional shelters, means that food

for moth larvae is always available. These conditions

likely explain why neither diapause nor seasonal

rhythms have been reported for this species at any

elevation in Ecuador and imply that its thermal limits

and population dynamics are defined spatially rather

than seasonally (Dangles et al. 2008). About 25,000

people, mainly subsistence and market-oriented

farmers, currently live in the Simiatug parish in about

45 Kichwa communities or in scattered houses across

the territory. With approximately 3,000 inhabitants,

Simiatug village is the economic center of the valley

and the communities around are smaller in size and

density (50–700 inhabitants) (for further detail see

Dangles et al. 2010).

The model

Overall structure

Potato moth dynamics were simulated with a spatially

explicit, stage-structured, CA model, based on bio-

logical and ecological rules derived from field and

laboratory data of T. solanivora’s physiological

responses to climate (temperature and rainfall). Our

simulations focused on a study area of 20 9 20 km

within the valley (Fig. 1b) represented by a grid of

1,600 cells with a cell size of 0.25 km2. Each cell of

the grid is characterized by environmental variables

such as temperature, precipitation, land use and the

presence and size of villages (Fig. 1e) (MAE and

EcoCiencia 2005; Hijmans et al. 2005). Cell size was

selected to match the resolution at which land use data

were available.
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Model formulation

In this section we briefly describe our model’s formu-

lation. For more detail see Appendix S1 in Supplemen-

tary material. Our model’s setup consisted of an initial

inoculum of 90 moths in Simiatug village, the main

source of moth infestation in the region (Dangles et al.

2010). The choice of this inoculum was based on

measurements by our team of moth abundance in

infested potato sacks. However, sensitivity analysis

showed that varying this parameter had no effect on

model output (see Appendix B in Rebaudo et al. 2010).

Each time step represented one T. solanivora generation

(normalized to 3 months at 15�C). During each step we
used a stage-structured model (Briggs and Godfray

1996;Miller 2007) to describemoth population dynam-

ics in each cell. Three biological processes governed

these dynamics: survival (both demographically based

and climate dependent) between each consecutive stage,

dispersal through diffusion (density dependent) and

reproduction (climate dependent). Each time step the

infestation grew and spread over farmers’ fields.

An important assumption of our CA is maximum

moth passive dispersal distance. We are not aware of

any empirical data on T. solanivora’s flight capacity.

We therefore used data of a related moth,Phthorimaea

operculella (Gelechiidae), the only published data we

are aware of. However, even for P. operculella, there

is little and contradictory information regarding its

flight abilities, with some studies describing these

moths as good fliers (Yathom 1968; Foley 1985) and

others reporting limited flight abilities (Fenemore

1988). In two separate studies, Cameron et al. (2002,

2009) reported that these moths could fly up to 250 m.

We therefore used this value for our maximum

dispersal distance parameter. Comparative observa-

tions by our team of flight capabilities between P.

operculella and T. solanivora in Ecuador revealed that

the latter is a much worse flier than the former and we

thus considered that we did not underestimate T.

solanivora’s dispersal ability. Furthermore, a closer

look at T. solanivora’s propagation into the Simiatug

valley revealed that in order to predict the observed

pattern of invasion without long distance dispersal,

moths would have to fly about 1.5 km per generation,

a value six times higher than the one chosen for our

parameter.

To avoid populations growing to unmanageable

sizes we set adult moth carrying capacity of each cell

to 1,000 individuals. This value corresponds to the

Fig. 1 Map of the study

area showing a the location

of the Simiatug Valley in the

central Ecuadorian Andes;

b land use in the area

showing the specific area of

20 9 20 km of our cellular

automaton (black square);
c elevation of the cells of our
grid; d mean yearly

temperature of the last

30 years of the study area;

and e villages in the study

area. See Fig. 4 for known

moth distribution in the

Simiatug valley from 2006

to 2009)
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highest number of moths ever collected in the

Ecuadorian Andes by the staff of the Laboratory of

Entomology of the PUCE in an area of 250 m of

radius, the action range of pheromone traps (Barragán

comm. pers.). Furthermore, it lies within the range of

observed densities of adults of other Gelechiidae (see

Rothschild 1986 and references therein). To ensure

that this did not impact our results we ran a sensitivity

analysis where carrying capacity was varied and found

that this parameter had no effect on dispersal speed but

had a strong effect on population growth (results not

shown, but see Appendix B in Rebaudo et al. 2010).

However, since our output was expressed as ‘‘relative

moth abundance’’ (see ‘‘Analysis of moth propaga-

tion’’ section), results were not affected by the

carrying capacity.

We built on this basic scenario to incorporate the

effects of two key farmer activities on moth propaga-

tion identified in previous studies: (1) changes in

microclimatic conditions due to presence of potato

storage structures (Dangles et al. 2008), and (2) long-

distance dispersal (LDD) events through passive moth

transportation in human vehicles (Dangles et al. 2010).

Potato storage structure scenario

Potato storage structures have been shown to buffer

extreme air temperatures (see Dangles et al. 2008,

Appendix D), changing the thermal environment of

the growing larvae. To further understand the impor-

tance of these structures for moth invasion dynamics,

we surveyed temperature conditions inside and outside

potato storage structures using data-loggers (HOBO�

U12, Onset Computer Corporation, Pocasset, MA,

USA). For details see Appendix S2 in Supplementary

material.

To examine the influence of storage structures on

moth dynamics we located structures in 0, 15, 30, 45,

60, 75 or 90% of the cells of the CA, with three

different types of spatial distribution (aggregated,

random, and regular). Several procedures are available

to generate particular point patterns in a two dimen-

sional space (Wu et al. 1987; Diggle 2003; Perry

2004). We used the R ‘‘spatstat’’ package which

allows the creation of point patterns with distributions

from aggregated, through random to regular (Badde-

ley and Turner 2005). We generated the aggregated

distribution, using a Neyman–Scott process with the

‘‘rneymanscott’’ function, the random distribution

with a homogenous Poisson process, using the func-

tion ‘‘rpoispp’’, and the regular distribution with a

Simple Sequential Inhibition (SSI) process with the

‘‘rSSI’’ function.

To characterize the general form of the inside-

outside temperature relationship (Fig. 1 of Appendix

S2) we fitted the data to a linear and three non linear

functions (log, power and hyperbole). The linear

relationship gave the best overall fitting performance

and was thus used to modify the temperature of cells

with storage structures as follows:

TSi ¼ aTOi þ b ð1Þ
where TSi is temperature inside the storage structure at

cell i and TOi is mean outside air temperature of that

cell. The values of parameters a and b depend on cell

altitude (see Table 1 of Appendix S2).

Long-distance dispersal scenario

Long-distance dispersal through human transportation

of potato tubers, re-used potato bags and infested soil

(using motorized vehicles, donkeys, or llamas as

transportation agents) constitutes a key mechanism for

potato moth spread in the Andes (EPPO 2005; Dangles

et al. 2010). LDD was included in our CA by using a

gravity model. These models are a common tool,

mainly used by geographers, which allow the estima-

tion of LDD between discrete points in heterogeneous

landscapes (Bossenbroek et al. 2001). They relate the

interaction strength between a discrete invading

source and an invaded destination and calculate the

flow of individuals that move from one to the other

(Muirhead et al. 2006). Following the approach

developed by Bossenbroek et al. (2001) we modeled

the probability of moths jumping from an infested

village i to an uninfested one j (Pi?j) as follows:

Pi!j ¼
X26
i¼1

Wi � gi½ � � Wj

zj

� �
ð2Þ

where the first factor represents the probability of a

vehicle carrying infested potatoes leaving an infested

village, and the second one represents the attractive-

ness of a non-infested village (note that there were 26

villages in our study area). The first factor is

influenced by village size (human population relative

to that of Simiatug village, Wi = Pop/3,000) and the

relative abundance of moths (gi) in that cell (relative to
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cell carrying capacity, i.e. 1,000). The second factor is

influenced by village size (Gilbert et al. 2004) and

relative remoteness (zj). Remoteness was calculated as

the total time to travel from one village to all the others

(Dangles et al. 2010). Each village had its own relative

remoteness value (zj) which was obtained by dividing

village remoteness by the value of the most remote

village. We chose not to include distance between

villages in the equation since the probability of

farmers visiting a village depends on the time it takes

for them to get there (which is influenced by the

existence and quality of roads) rather than on actual

distance. Establishment (sensu Liebhold and Tobin

2008) in a newly invaded cell depends on the

environmental characteristics of the sink cell. Thus,

moths have some probability of arriving to any cell

with a village but the probability of them establishing

there depends on the climate and the presence or

absence of potato cultures in it. As the invasion

evolves more villages become infested and the number

of moths in each increases. As a consequence, the

probability of moths dispersing to uninfested villages

also increases.

As the success of an invading population is known

to be highly affected by the number of propagules

which is involved in the LDD event (see the notion of

‘‘propagule size’’ effect in Liebhold and Tobin 2008),

the importance of LDD for invasion dynamics was

assessed by varying the number of moths potentially

jumping from one village to another during each time

step of the CA. Simulations were performed for

propagule sizes of 0, 10, 20, 40, 80, 160, 320, or 640

juvenile moths.

In this contribution we assumed that propagule size

was fixed in each simulation (i.e. the number of moths

that jumped was the same during each LDD jump).

This is not the case in reality where the number of

organisms that disperse varies between each dispersal

event (Liebhold and Tobin 2008). An interesting

future research perspective would therefore be to

analyze the effect that varying the size of the

propagule during each inter-village transfer has on

model output.

Analysis of moth propagation

The model allows simulating moth propagation in the

study area through time. (Figure 2a–c shows captions

of CA grids with the temporal evolution of T.

solanivora levels at three different steps of the

invasion process.) As model output, we were inter-

ested in the progression of moth relative abundance

and of the proportion of invaded area through time

(black and gray curves of Fig. 2d, respectively). Since

both types of output presented similar results we will

refer only to moth abundance data in the following.

Model output was adjusted to the following sigmoid

function (Hufkens et al. 2008) as follows:

nðtÞ ¼ x

1þ e�hðt�rÞ ð3Þ

wherex represents the proportion of moths (relative to

the total carrying capacity of the model, i.e. 1,600,000

moths) where the invasion stabilizes, h the steepness

of the curve (i.e. invasion speed) and r the generation

at the invasion’s mid-point (Fig. 2e). Parameters were

estimated with the ‘‘nls’’ function in the ‘‘stats’’

package of R (R Development Core Team 2009

version 2.10).

We used boosted regression trees, BRT (Elith et al.

2008; Buston and Elith 2011; Munkemuller et al.

2011), to understand the relative contribution of each

factor on model output. For this we ran simulations

with all the possible combinations of parameters’

values among the human influence factors (i.e. we

combined the different percentages of storage struc-

tures, with the three types of storage structure spatial

distribution and with different propagule sizes). We

ran 20 simulations for each combination. Then we

adjusted Eq. 3 to model output and ran the boosted

regression tree analysis on each of the three param-

eters. BRTs were fitted in R (R Development Core

Team 2010 version 2.11.1), using gbm package

version 1.6-3.1 (Ridgeway 2010) plus custom code

that is available online (Elith et al. 2008). We

calibrated our boosted regression tree models through

a 10-fold cross validation (CV) and determined

optimal number of trees by systematically varying

values for tree complexity, tc, and learning rate, lr, and

choosing the number of trees where holdout deviance

was minimized. We used partial dependence plots to

visualize the influence of parameters on the model’s

output. These plots show the effect of a focal predictor

on the response controlling for the average effect of all

other variables in the model (for further information

on boosted regression trees and an explanation of their

parameters see Elith et al. 2008, and Buston and Elith

2011).
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Model validation with field data

Spatio-temporal validation of the invasion process

in the Simiatug valley

A four year survey of PTM abundance since the initial

introduction of the pest into the Simiatug valley in

2006 allowed us to compare the spatio-temporal

invasion simulated by our model to real data. These

data were obtained once a year from participative

monitoring with local farmers from 13 communities

located at various altitudes and distances from Sim-

iatug village (see Dangles et al. 2010). We compared

the agreement between observed data and either the

basic or the LDD scenarios’ outputs after 16 gener-

ations (i.e. 4 years), with the use of the kappa statistic

which measures the proportion of correctly predicted

presences and absences, after accounting for chance

effects (Manel et al. 2001). We further examined the

significance of kappa values under the null hypothesis

of no agreement beyond chance (Fleiss 1971). These

analyses were performed using the ‘‘PresenceAb-

sence’’ package of R (R Development Core Team

2009).

Altitudinal validation in the Ecuadorian Andes

We compared moth altitudinal distribution predicted

by our model (using the altitudes of the cells infested

by T. solanivora at equilibrium) with data of the actual

distribution of the pest in the country. This analysis

allowed us to assess the validity of our model in

predicting the actual spatial distribution in agricultural

landscapes of the Ecuadorian Sierra. Data from 80

sites were obtained through a large-scale field survey

in four provinces in the center of Ecuador (Cotopaxi,

Tungurahua, Chimborazo, and Bolı́var) at altitudes

ranging from 2,300 to 3,700 m (see http://www.

innomip.com for further details on moth monitoring

in the region). At each site, the abundance of T. so-

lanivora adult males was monitored using dome traps

baited with pheromones and placed at 1 m height in

potato fields. Catches in traps were recorded every

3 weeks during at least the 10 weeks that preceded

harvest date (see Dangles et al. 2008, for further

details). We compared the observed data to the dis-

tributions of the frequencies of the altitudes of cells

with moth predicted by (1) the basic, (2) the LDD, and

(3) the LDD and storage structure scenarios combined

Fig. 2 Examples of model

outputs: a–c spatial invasion
represented by captions of

CA grids at three different

steps (t) of the invasion
process; d temporal invasion

throughout moth

generations with the relative

number of moths (N) and the
proportion of invaded area

(Area); e sigmoid wave

showing the parameters

used in the sensitivity

analysis
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(LDD ? storage) through Kolmogorov–Smirnov (K–

S) tests. We also compared the means and variances of

the distributions with a Welch Two Sample t test and

an F test, respectively. All these analyses were per-

formed with R (R Development Core Team 2009).

Results

Model exploration: influence of human practices

on moth dynamics

Influence of potato storage structures

As evidenced by the boosted regression tree analysis,

storage structure distribution had a stronger influence on

the relative number of moths at the end of the invasion

process (i.e. parameter x, Fig. 3a) with clumped

distribution allowing higher moth densities than the

two other types of distributions. Storage structure

percentage influenced moth abundance less strongly

(Fig. 3b), but analysis did show that these two variables

presented a positive relationship, with moth abundance

increasingwith higher percentages of storage structures.

Contributions of each human influence factor on

parameter h were similar (Fig. 3d–f) with storage

structure distribution presenting a slightly stronger

influence than the other two. Invasion speed increased

from clumped to random and to regular distribution

(Fig. 3d). On the other hand, this parameter decreased as

storage structure percentage increased (Fig. 3e). How-

ever, these results are probably artifacts due to the fact

that with clumped distribution and with higher storage

structure percentagesmothfinal abundance is higher, and

reaching this higher number of moths takes more time.

The generation at invasion midpoint (i.e. parameter

r) was also influenced in a similar degree by the three

parameters (Fig. 3g–i). Differences among the three

types of storage structure distribution were less

evident, with a slight decrease from clumped to

regular (Fig. 3g). Increasing storage structure per-

centage caused generation at invasion midpoint to

increase (Fig. 3h), but again this is due to the increase

in final moth abundance.

Influence of long-distance dispersal

The influence of propagule size on moth abundance

was low and did not vary among the different numbers

of moths that jumped (Fig. 3c). This was expected

since propagule size does not influence the amount of

invasible space and when the invasion stabilizes cells

have reached their carrying capacity.

Our analysis showed that including LDD jumps

accelerated the invasion process, as evidenced by the

increase in parameter h (Fig. 3f) and the decrease in r
(Fig. 3i). LDD influenced parameter r to a slightly

higher extent than the two factors related to storage

structures (Fig. 3i). However, we found that our model

was insensitive to varying propagule size. All the

difference was concentrated between simulations with

no LDD and simulations with LDD. This is probably

caused by high moth fecundity (a female moth lays

more than two hundred eggs at 15�C), as when moths

jump invaded cells soon reach their carrying capacity,

diluting initial differences in propagule size.

Model validation

Spatio-temporal validation in the Simiatug valley

The level of agreement of the basic model and LDD

scenario with field survey data at 13 villages across the

valley is shown in Fig. 4. We found that the inclusion

of LDD in our model provided a better prediction of T.

solanivora’s spatio-temporal propagation through the

Simiatug valley, as revealed by the higher values of

kappa. However, these values were significant only for

2007 and 2008. In 2009 the value of kappa is lower

because the model predicts moth presence in village 9

although they were not found during the monitoring.

The basic model did not predict moth presence in six

of the villages where the insects were found during

field monitoring. In some of them, notably villages 5

and 6, the model predicted moth presence only 4 years

after the invasion, suggesting an unrealistically slow

dispersal (Fig. 4b). In contrast, the LDD scenario was

able to predict moth presence in almost all villages

where moths were found during the monitoring

(Fig. 4c). In village 2 the LDD scenario did not

predict moth presence, and moths were not observed

during monitoring along the 4 years. This village is

unsuitable for moth survival because of the absence of

potato cultures (no suitable habitat). Village 11 was

the only one where our LDD model did not predict

moth presence even though moths were found during

the monitoring. Other small discrepancies between our

LDD model prediction and field data mainly consisted
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Fig. 3 Partial dependence plots for parameter x (a–c), h (d–f),
and r (g–i). Fitted functions have been centered by subtracting

their mean. Rug plots at the inside top of plots show the

distribution of data, in deciles, of the variable on the X-axis.
Values in parenthesis indicate relative contribution of each factor
to model output
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in a prediction of moth arrival in the villages before

they actually did arrive.

Altitudinal validation in the Ecuadorian Andes

We compared moth altitudinal distributions predicted

by our model at stable population levels with those

found under field conditions (Fig. 5). Distributions of

the basic and LDD scenarios were virtually identical

(K–S test: D = 0.08, P = 1), because LDD acceler-

ates the invasion but does not allow moths to survive

in cells with unsuitable climate. We also found that

these results were no different from the distribution

of observed data (K–S test: D = 0.38, P = 0.291),

implying no significant differences between our

predictions and field data. Distributions predicted

by the LDD and storage structure scenarios com-

bined was also not different from the observations

(K–S test: D = 0.15, P = 0.998). However, t and F

tests showed that with respect to mean and variance

the LDD plus storage structure scenario was more

similar to the observed data than the LDD and the

basic scenarios (t test P value = 0.992, 0.631, and

0.553 and F test P value = 0.942, 0.695, and 0.688,

respectively).

Discussion

Spatial heterogeneity plays a defining role in popula-

tion dynamics (Hutchings et al. 2000; Hanski and

Gaggiotti 2004), and several authors recognize the

importance of its inclusion into studies of biological

invasions (Melbourne et al. 2007; Jongejans et al.

2008; Harris et al. 2009; Carrasco et al. 2010).

Heterogeneity may be caused by variations in abiotic

factors such as temperature or precipitation, or in

biotic factors such as resource availability or the

presence of competitors (Schreiber and Lloyd-Smith

2009). Our work suggests that another type of spatial

heterogeneity, socially induced heterogeneity, is prob-

ably one of the main drivers of invasion dynamics in

agricultural landscapes.

Spatially explicit, stochastic modeling methods are

useful for simulating the influence of spatial hetero-

geneity on invasive dynamics (Nehrbass and Winkler

2007; Nehrbass et al. 2007; Travis et al. 2011). CA

models, in particular, allow including detailed infor-

mation about the landscape—making it not simply

spatially explicit, but spatially realistic (Harris et al.

2009)—and are especially useful for simulating

dynamics in landscapes with particular structures

Fig. 4 Spatio-temporal

validation of the model’s

outputs to field monitoring

data from 2006 to 2009 in

the Simiatug valley. a The

13 villages involved in the

monitoring; b outputs of the

basic model (no human

influence); c outputs of the
LDD scenario. Black circles
represent cases where moths

were observed but not

predicted by the model; gray
circles, cases where moth

presence was predicted by

the model, but no moths

were found during the field

monitoring; and white
circles, cases in which

model outputs coincided

with field data
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(Soons et al. 2005; Herben et al. 2006; Jongejans et al.

2008). In this study, incorporating real-world data

bases of environmental and social variables into the

model proved a powerful tool to simulate invasive

spread in a human-dominated landscape.

Modification of the climatic environment

by storage structures

Given the influence of temperature on insect popula-

tion dynamics, their propagation may be enhanced if

they encounter sites with suitable thermal conditions

(Régnière and Turgeon 1989). Several studies have

acknowledged the buffering capacity of storage

structures and their influence on potato tuber worm

survival (Roux and Baumgartner 1998; Hanafi 1999;

Keasar et al. 2005), but recognize that data concerning

the ambient temperature in storage structures is

lacking (Keasar et al. 2005). Our temperature surveys

helped us to better understand the actual temperature

buffering capacity of storage structures in our land-

scape. They revealed that below altitudes of 3,100 m

potato storage structures present microclimatic

conditions always favorable for infestation by T.

solanivora while above 3,100 m these structures

usually present unfavorable microclimatic conditions

(temperature inferior to field temperature and between

9 and 10�C). Our results showed that, in general,

storage structure presence increased moth abundance

and that spatial distribution of storage structures has a

strong influence on moth dynamics with a clumped

distribution being the most favorable to moth survival

and propagation. Moth’s altitudinal distribution pre-

dicted by our model when we included storage

structures was closer to the species’ actual distribution

than that predicted by the basic or LDD scenarios.

Hence, it seems that potato storage structures permit

moths to survive in sites from which they would

normally be excluded due to climatic constraints. This

result is consistent with those of Suarez et al. (2001)

and Pitt et al. (2009) who found that the invasion of the

Argentine ant, Linepithema humile, was always pos-

itively affected by the presence of human construc-

tions (notably human habitations) that allow them to

persist locally in areas with unfavorable climates.

However, we also found that a high density of storage

structures was detrimental for moth invasion above

3,100 m (results not shown), certainly due to the

persistence of cold temperatures (ca. between 9 and

10�C) within the storage structures located at such

altitudes. Since Simiatug village (where we placed the

initial inoculum) is located at 3,400 m, high storage

structure density at and around this location may

drastically slow or impede moth survival, causing a

severe decrease on the relative number of moths in

some of the simulations. This counterintuitive result

coincides with results found in a study at the Mantaro

Valley (central Peru) where farmer interviews

revealed that some high altitude storage structures

were not infested by the potato tuber moth, Symmet-

rischema tangolias, probably due to the low temper-

atures attained by these structures (Keller 2003).

Long-distance dispersal events

Our results highlight the importance of passive moth

transportation in human vehicles which allows insects

to make LDD jumps. Even though several authors

have acknowledged the significance of this type of

dispersal for species’ spread (Buchan and Padilla

1999; Bossenbroek et al. 2001; Nehrbass et al. 2007),

notably invasive insects (Suarez et al. 2001; Pitt et al.

Fig. 5 Altitudinal validation of the model’s outputs to field

monitoring data in the Ecuadorian Andes. The figure shows the

comparison between the observed altitudinal distribution in 85

sites of central Ecuador where moth abundance was sampled

between 2006 and 2009 and predicted distribution by the

model’s basic (no human influence), LDD and LDD plus storage

structure scenarios. Bars indicate 95% confidence intervals on

observed frequencies
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2009; Carrasco et al. 2010), its inclusion inmodels still

poses difficulties for modelers (Bossenbroek et al.

2001; Pitt et al. 2009). The failure to accurately

measure LDD events has impeded sufficient agree-

ment between model output and empirical data

(Hastings et al. 2005). Most dispersal models are

based on empirically measured rates of dispersal

which are not available for many species. Even when

such data are available, these types of models may

underestimate spread rates since they do not allow

organisms to jump over unsuitable habitat (Pitt et al.

2009). Classical metapopulation models (Hanski et al.

2000), SPOMs (Moilanen 2004) or gravity models are

suitable in such cases. The latter represent an

interesting choice for modeling LDD in the case of

species for which no data on the rate of long-distance

jumps are available. These models do not consider

movement rates by organisms themselves, but the

force of attraction between an origin and a destination

(Bossenbroek et al. 2001). Thus, they may be quite

useful to predict the spread of human-vectored organ-

isms where site ‘attractiveness’ is based on human

behavior (Gilbert et al. 2004; Carrasco et al. 2010).

Modeling T. solanivora’s long-distance jumps with

a gravity model was suitable since passive transport in

human vehicles is thought to be the means by which

these organisms attain far away sites (EPPO 2005). A

key step when using these types of models consists in

including the appropriate set of factors likely respon-

sible for the dispersal of the invasive species (Bos-

senbroek et al. 2001). In our case, including village

size and remoteness as measures of interaction force

permitted us to accurately simulate moth spread across

the valley. This reveals how social heterogeneity plays

an essential role defining the patterns of propagation of

invasive pests in human dominated landscapes.

Including the gravity model within the CA was

certainly convenient since the latter allowed us to

‘‘spatialize’’ such heterogeneity and enhanced realism

in our predictions.

In some cases, our LDD scenario over estimated

invasion speed by predicting moth dispersal to some

villages where they have not been detected with the

field monitoring or before they actually were. This

may be related to the stochastic nature of jump

dispersal events (Lewis and Pacala 2000) that we

incorporated in our model by making the probability

of LDD equal to a product of two other probabilities

(the probability of moths leaving a village by the

probability of moths arriving to another, Eq. 1).

However, as pointed out by Pitt et al. (2009) overes-

timation in such models means that they may be used

for risk assessments of invasion since they allow the

localization of invasible sites.

Potential application for invasive pest control

in tropical agricultural landscapes

Accurate predictions of pest invasion dynamics are

important for people concerned with integrated pest

management (IPM) to optimize the type, place and

timing of control measures used to minimize the

damages (Régnière et al. 2009; Shea et al. 2010;

Travis et al. 2011). Our CA model allowed us to

understand the influence of human practices on pest

propagation, and provided direct applications for

pest management such as the importance of survey-

ing farmers’ storage structures’ temperature regimes

to assess their potential role in insect persistence and

spread. A further advantage of CA models is that

they can be easily coupled with agent-based models

(Bonabeau 2002), which allows taking farmer

behavior directly into account to simulate its impact

on insect spread. Recently, we integrated our CA

with an agent-based model to assess the importance

of farmers’ mobility and pest control knowledge on

pest expansion (Rebaudo et al. 2011). Such a

coupled model was then used as an educational tool

to make farmers aware of the dangers due to the pest

and on the procedures they should follow to impede

its propagation. The flexible and upgradeable nature

of CA would make them powerful tools for ecolo-

gists to better understand invasion dynamics in the

most challenging landscapes.

Acknowledgments This work was part of the research

conducted within the project Innovative Approaches for
integrated Pest Management in changing Andes (C09-031)

funded by the McKnight Foundation. We are grateful to Jérôme
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APPENDICES CHAPTER 1 

APPENDIX S1.- Description of the cellular automata basic scenario 

This appendix describes our cellular automaton’s basic scenario (no human influence) in 

detail. Description is inspired by the ODD protocol (Overview, Design concepts, and Details) 

for describing agent-based and cellular automata models (Grimm et al. 2006, Appendix A). It 

first consists on an overview of model structure and then describes each sub-model in detail. 

Model overview 

Our model simulates the spatio-temporal dynamics of potato tuber moth invasion. We built 

our model using the Cormas modeling platform (CIRAD, France, http://cormas.cirad.fr) based 

on the VisualWorks programming environment. 

State variables and scales 

The basic module is based on biological and ecological rules derived from field and 

laboratory experimental data for T. solanivora. State variables are divided into those related to 

the physical and climatic environment (geographic variables) and those related to moth 

abundance. 

 Geographical variables.- Each cell i of our model grid is characterized by a mean 

elevation Ei (in m.a.s.l.), the temperature Ti:m of month m (in °C), the precipitation Li:m of 

month m (in mm) and the habitat quality Qi, defined by the presence (Qi=1) or absence (Qi=0) 

of cultivated potato fields in the cell. All these variables are summarized in Table 1 and Fig 1. 

The first three variables were obtained from the WorldClim data set (Hijmans et al. 2005). 

The latter was obtained from the BINU Project (Biodiversity Indicators for National Use, 

MAE and EcoCiencia 2005). Both temperature and precipitation data corresponded to the 

means of the period 1961-1990 (Hijmans et al. 2005).  

 Moth abundance variables.- Moth life cycle can be differentiated into four life stages: 

egg, larva, pupa, and adult. T. solanivora’s larval stage can be further divided into four 

instars. However, for the purposes of this study, all larval instars were combined into a single 

life stage because it was not possible to adequately segregate the development and survival 

functions for each instar inside the potato tuber (see Dangles et al. 2008). Furthermore, since 

moth immature stages constitute a biological and ecological unit (sharing similar life 
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environments), it is likely that segregating development and survival functions for each larval 

instar would not have given more accuracy to the model.  

 We had three outcome variables in each cell of the model: 1) the abundance of 

immatures Ji, which grouped eggs, larvae and pupae, 2) the abundance of adults Mi, and 3) the 

abundance of gravid females Gi (Table 1, Fig. 1). These three variables represented the 

higher-level variables of the model, i.e. the variables that contained information deduced from 

the state variables (sensu Grimm et al. 2006).  

 

Table 1. State and higher-level variables of the basic module.  

Variable name Description Parameter Units 

State variables    

Elevation Elevation on the study zone per cell i Ei m 

Temperature Average temperature per cell i and month j Ti,m ºC 

Precipitation Average precipitation per cell i and month j Li,m mm 

Habitat quality Presence of potato cultures in cell i Qi Boolean 

Higher-level variables 

 Immature abundance in cell i Ji Number of 

individuals 

Moth abundance Adult abundance in cell i Mi Number of 

individuals 

 Gravid female abundance in cell i Gi Number of 

individuals 
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Fig.1. Schematic model structure. Variables in the grey area are the state variables of the 

model. The white zone represents higher-level variables that contain information deduced 

from state variables. 

 

Scales 

Each time step represents one moth generation (normalized to 3 months at 15 °C). We chose a 

500 × 500 m scale for cells (i.e. 0.25 km²) to fit the level of precision available on the land use 

data. Elevation, temperature, and precipitation had a 1 km² resolution, so that inside a square 

of 4 cells, these parameters had the same value.  

 

Sub models 

In this section we first describe model initialization and variable setting and then detail each 

sub model used to update the cells at each generation.  

Initialization 
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At the beginning of each simulation, we placed an inoculum of 90 individuals in the Simiatug 

village, the main source of moth infestation in the region (Dangles et al. 2010). This inoculum 

size represents the median value for T. solanivora pupae abundance in infested potato sacks 

(Padilla and Dangles, unp. data, n = 21 sacks, SD = 23). We therefore simulated what likely 

happened after road rehabilitation in 2006 using one potato sack as the inoculum. We set the 

adult moth carrying capacity of each cell to 1000 individuals (see main text). After the initial 

inoculum, moth spread was observed and recorded throughout successive generations.  

State variables setting 

 Temperature and precipitation.- As the model’s time step was fixed to one T. 

solanivora generation, we used temperature and precipitation data corresponding to the mean 

of three consecutive months.  

 Habitat quality.- Data of the land use layer allowed us to identify potential zones with 

potato cultures (termed “short cycle crops”) where moth can realize their life cycle. 

Complementary field observations were made to check the accuracy of the data, especially in 

the rapidly expanding agricultural frontier to higher altitudes. Cells with short cycle crops 

were given the value of 1 and allowed moth survival whereas the rest were given a value of 0 

and hampered survival. 

 

Sub models – Spatial dynamics of moth populations 

Because survival rates and reproduction of moths depend on their physiological stage (eggs, 

larvae, pupae, adults), we used a stage-structured model (Briggs and Godfray 1995, Miller 

2007) to describe moth population dynamics in each cell. Three biological processes governed 

these dynamics: survival (both demographically based and climate dependent) between each 

consecutive stage, dispersal (adults) and reproduction (gravid females) (Fig.1). Climate 

dependent survival was a function of both temperature and precipitation. Adult dispersal, 

through diffusion, was influenced by moth density, flight distance, and cell size. Reproduction 

depended solely on temperature as it has been shown for other Gelechiid species (e.g. 

Phthorimaea operculella) that precipitation has little direct influence on this parameter (Roux 

1993). Information about the effect of temperature on survival and reproduction and of 
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precipitation on survival was obtained from laboratory experiments and field data, 

respectively.   

Immature moth survival 

 Demographically based mortality.- Following Roux (1993), we considered that the 

overall forces of mortality among immature instars were the sum of demographically based 

and climate related forces. We included two sources of demographically based mortality: 

dispersal related mortality λdisp occurring between each immature stage (for example when a 

newly hatched larva searches for a tuber) and predation λpred (Roux 1993, Roux and 

Baumgartner 1998). The survival function Sdisp,pred for each cohort was expressed as follows: 

)tλ(λ
disp,pred

preddispe(t)S +−=                  (1) 

 

where t denotes days after cohort initiation.  

 The lack of biological data on T. solanivora’s mortality compelled us to fix the λdisp 

and λpred parameter to 0.060 and 0.145 respectively, based on data from Roux (1993, Table 

4.8) for the Gelechiid moth P. operculella. Based on Fig. 4.18 and Table 4.8 in Roux (1993), 

presenting Sdisp,pred as a function of time, we chose t =2 days as this is the approximate amount 

of time it takes newly hatched larvae to get to the tubers (Dangles and Mesias unpbl. data). 

We are not aware of data on demographically based mortality of larvae living inside the 

tubers.  

 Temperature dependent survival.- Data on survival for immature stages as a function 

of temperature were acquired from two sources. First, we compiled published data from 

laboratory experiments performed using moth populations from different regions in the 

Northern Andes (Notz 1995, Castillo 2005, Dangles et al. 2008). Second, we used 

unpublished data obtained within the last 8 years in the Entomology Laboratory of the 

Pontificia Universidad Católica del Ecuador (PUCE, Pollet, Barragan and Padilla, 

unpublished data). For these two sources, only data acquired under constant temperatures (± 2 

°C) were considered. In all studies, relative humidity ranged from 70 to 90 %, values above 
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any physiological stress for these moths (Roux 1993). These survival data as a function of 

temperature, S(T), are presented in Fig. 2. 

 

Fig. 2. Effect of constant temperatures on the survival rate S(T) of T. solanivora’s immature 

life stages as fitted by eq. 2. Circles represent observed survival rates and lines correspond to 

the adjusted model. 

 Several models have been used to describe the relationship between temperature and 

process rates in insects, like the Sharpe and DeMichele model (Sharpe and DeMichele 1977), 

the Extended von Foerster model (Gilbert et al. 2004) and the distributed delay model 

(Dangles et al. 2008). We modeled temperature-related survival rates of immature moth using 

the Sharpe and DeMichele equation that has already been successfully used to simulate tuber 

moth development and survival (see Roux 1993): 

            

                      (2) 

 

with T the fixed mean temperature expressed in °K, R the universal gas constant (1.987 

cal.°K-1.mol-1), and a, b, c, d, e, and f parameters to be estimated. Model adjustment was 

performed using least square minimization techniques in the Library (Mass) of R (R 

Development Core Team 2009). Results are shown in Fig. 2 and. Table 2. 
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Table 2. Parameter values of the kinetic model (eq. 2) describing the stage specific survival 

rate S(T) of T. solanivora at constant temperatures. Note that temperature is given in degrees 

Kelvin in the model (parameters d and f). 

Stage a b c d e f R² 

Egg 0.822 -758.5 -212100 281.9 405200 303.8 0.919 

Larva 0.758 -180.2 -475700 282.7 1298000 301.5 0.902 

Pupa 0.900 -73.72 -1263000 286.5 1095000 306.3 0.892 

 

 Adjustment of moth generation length at different temperatures.- The time step of our 

model was one moth generation, fixed at three months. In order to account for differences in 

generation length among individuals growing at different temperatures (for example along the 

altitudinal gradient), we made an adjustment on immature abundance (Ji) as a function of cell 

temperature. This adjustment affected only a small proportion of individuals since most of 

them had a generation period close to three months in the studied region (Dangles et al. 2008).  

For this adjustment we first compiled published (Notz 1995, Castillo 2005, Dangles et al. 

2008) and unpublished data (Pollet, Barragan and Padilla, unpublished data) on T. solanivora 

development rates at various constant temperatures. We adjusted these data to the Sharpe and 

DeMichel model with the same procedure as for the survival data. Results are shown in Fig. 3 

and Table 3 (note that to differentiate from survival rate parameters, parameters for 

developmental rate are followed by a D in subscript). 
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Fig. 3. Effect of constant temperatures on the stage specific developmental rate D(T) of T. 

solanivora’s immature life stages. Circles represent observed survival rates and lines 

correspond to the adjustment of the Sharpe and DeMichel equation (eq. 2). 

 

Table 3. Parameter values of the kinetic model (eq. 2) describing the stage specific 

developmental rate response of T. solanivora to constant temperatures. Note that temperature 

is given in degrees Kelvin in the model. 

Stage aD bD cD dD eD fD R2 

Egg 0.179 17250 -48000 265.2 121830 304.2 0.887 

Larva 0.076 11000 -50000 283.1 275000 302.1 0.876 

Pupa 0.187 11500 -35000 290.0 125000 299.5 0.898 

 

 Developmental rates for immature moths in each cell i of the model were then 

calculated and divided by that at 15 °C (temperature at which developmental time 

corresponds to 3 months). The result of this division was then multiplied by the number of 

immature moths (Ji) in the corresponding cell.  

 Precipitation dependent mortality.- We were not aware of any mechanistic model 

describing the effect of precipitation on moth survival so we decided to incorporate 

precipitation in our model using empirical field data. Heavy rainfall events such as the El 
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Niño event in late 1997 (Barragán et al. 2004) and in late 2007 to July 2008 (Dangles and 

Carpio, unpubl. data) significantly affected moth population abundance in the field. Other 

studies also registered a decrease in the number of T. solanivora adults collected during rainy 

periods (Barreto et al. 2004, Niño 2004) and this coincides with results found for P. 

opercullela (Rothschild 1986) and other moth species like the Gypsy moth (Lymantria dispar, 

Pernek et al. 2008). Therefore, we included an effect of rainfall over a fixed precipitation 

threshold which was chosen based on climatic data and corresponding field abundance data 

(Dangles et al. 2008, Appendix A http://www.esapubs.org/archive/appl/A018/062/appendix-

A.htm). Moth abundance was reduced by 80 %, when the cumulated rainfall during 3 

consecutive months was higher than 600 mm (i.e. about 2.4 times more rainfall than on 

normal years). 

  

Adult moth survival 

We considered that adult mortality before reproduction was negligible since, according to the 

literature, mating in most Lepidoptera, including Gelechiidae, often occurs within 24 h of 

emergence (Webster and Carde 1982, Cameron et al. 2005).  

Adult neighborhood dispersal: 

T. solanivora’s dispersal takes place when adults fly in order to find mates and/or suitable 

oviposition sites in potato fields or in potato storage structures (Barragán 2005). To include 

neighborhood dispersal into our model we considered two factors: 1) the density dependent 

nature of emigration rate (Eizaguirre et al. 2004; BenDor and Metcalf 2006), and 2) the 

decrease in emigration rate with increasing distances (Cameron et al. 2002). These factors 

were integrated into our cellular automata through four steps: 

 1) Fraction of adults emigrating from cell i (VMi) as a function of adult density.– 

Based on BenDor and Metcalf (2006) we assumed that the fraction of adults emigrating per 

generation (VMi), with respect to population density, followed an S-shaped curve, which levels 

out as density approaches 50 % of the carrying capacity, K (Fig. 4).  
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Fig. 4. Fraction of T. solanivora adults emigrating as a function of adult density (eq.5). 

Carrying capacity (K) was fixed to 1000 adults per cell. 

 

 We calculated VMi using eq. 3 as follows: 

    

⎥
⎦

⎤
⎢
⎣

⎡
ψ

β−
−+

=
i

Mi M
V

exp1

5.0                     (3) 

 

where Mi is the number of adults in cell i, β  is the rate of increase in migration with density 

(transition center) and ψ is the transition width. Due to the absence of data for potato moth 

about the parameters of the S-shaped curve, we fixed arbitrarily β = 500 and ψ = 75, i.e. we 

assumed a symmetric pattern of the curve from a moth density of 0 to half of K. A previous 

sensitivity analysis revealed that these two parameters had little influence on the overall 

dispersion of moths (Rebaudo and Dangles 2008). 

 2) Emigration rate (Pdist) as a function of distance.– Following Cameron et al. 

(2002) for P. operculella, we calculated the probability of moths flying a given distance (δ) 

with eq. 4: 

δε
dist eP ∗−=                    (4) 

where ε is a fixed parameter of emigration rate (see below). As stated in the main text, lack of 

data regarding T. solanivora’s flight capacity forced us to fix maximum dispersal distance to 
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250 m, the value measured for P. operculella. Following Cameron et al. (2002), we used a 

maximum value of ε of 0.015.  

 3) Including neighborhood dispersal in our model.– Given the discrete nature of 

cellular automata, in both time and space, we could not include dispersal as a continuous 

variable. Therefore, for each time step of the simulation, we calculated the probability of adult 

moths crossing the border of their current cell (Pcross). First, we assumed that moths moved 

inside the cell either horizontally or vertically and that they flew to the closest of the four 

neighboring cells. Then we considered that the probability of them crossing the cell depended 

on the distance flown and on cell’s dimensions as follows: 

     
⎪⎩
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≤δ<
δ−−

>δ
=δ

2500)*2((
2501

),,( 2

A
CACAPcross                      (5) 

 

where A represents the cell’s surface and C its length. Pcross was then multiplied by the 

probability of moths emigrating (eq. 6) in order to obtain the actual probability of moths 

leaving a cell, which we named Pleaving: 

             Pleaving = Pcross * Pdist                                          (6) 

 

 4) Number of moths dispersing to adjacent cells (Ndisp).– Finally, the number of 

moths dispersing to neighboring cells was calculated as follows: 

     Ndisp = VMi * Pleaving                              (7) 

Fig. 5 shows effective dispersal rate in relation to moth density and flight distance. 
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Fig.5. Effective dispersal rate considering moth density and flight distance. 

 

Moth reproduction 

Insect reproduction is influenced by various factors including mating rate, sex ratio and 

female fecundity, which we all detail below for potato moth. 

 Mating rate.– For P. operculella this process was found to be correlated with age, sex 

ratio and weight of individuals, but also with distance between individuals (Makee and Saour 

2001, Cameron et al. 2005). Most Lepidoptera females tend to mate within 24 h of emergence 

(Webster and Carde 1982, Makee and Saour 2001). According to the latter, with a sex ratio of 

1:1, mating rate is approximately 0.9 after that same period of time. To our knowledge, no 

specific studies have been conducted on T. solanivora’s mating rate in natural conditions, and 

laboratory measurements may frequently represent an overestimation since laboratory females 

have little opportunity to avoid mating (Reinhardt et al. 2007). Therefore, in the absence of 

data we assumed a mating rate of 0.9. 

 Sex ratio.– Studies have documented a sex ratio of roughly 1:1 for T. solanivora 

(Herrera 1998) and P. operculella (Makee and Saour 2003). Unpublished data from colonies 

of T. solanivora reared at the PUCE confirmed these results (Mesías and Dangles, unpubl. 

data).  

 Female fecundity.– As for survival and development rates, data on female fecundity as 

a function of constant temperature were acquired from published (Notz 1995, Castillo 2005, 
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Dangles et al. 2008) and unpublished data (Pollet, Barragan and Padilla, unpublished data). 

We adjusted these to a gamma function (eq. 8), already used to model Gelechiid fecundity as 

a function of temperature (Sporleder et al. 2004), to obtain the temperature-dependent 

fecundity curve: 
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with T the mean fixed temperature in this case in °C and o, p, q, r and s parameters to be 

estimated. Parameter estimation was performed using least square minimization techniques in 

the Library (Mass) of R (R Development Core Team, 2009). F(T) is presented in Fig. 7, with 

the following estimation of curve parameters: o = -21.62, p = 345.50, q = 18.66, and r = 0.32, 

and s = 243.00 (R2 = 0.865).  

 

Fig.6. Effect of constant temperatures on moth fecundity F(T) as fitted by equation 8.  
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APPENDIX S2.- Description of the storage structure temperature survey 

This appendix describes in detail the storage structure temperature survey performed to 

parameterize the storage structure scenario of our cellular automaton. 

Methods 

We located HOBO data-loggers (HOBO® U12 and Pro v2 U23-001 data-loggers, Onset 

Computer Corporation, Pocasset, MA, USA)  inside and outside storage structures, fixed on a 

wooden stick at 1 m height from the ground in a shadow zone (for those that were outside). 

Temperatures were registered every 30 minutes for 6 different periods of 20 days between 

July 2007 and November 2008, in 6 storage structures located at different altitudes between 

2700 and 3300 m. Relative humidity conditions were also surveyed but presented similar 

variation inside and outside (ranging between 60-85 %).  

Results 

We found that field temperatures were greatly buffered inside storage structures (Fig. 1).  

 

Fig.1. Relationship between storage structure and field temperatures at 6 sites located at 

different altitudes. 
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 Whereas temperatures could vary to approximately 70-80 % of their median value in 

the field (often within the same day), their variation inside the storage structures was only c.a. 

20-30 %. A similar buffer pattern inside the storage (negative linear model) was found at all 

sites whatever the altitude. These data imply that for a given altitude, there is a temperature 

threshold (intersection between the linear model and the 1:1 line) below which temperature is 

warmer inside the storage than in the field and above which it is colder. 

 To include these results into our model we separated the altitudinal range into groups 

of altitudes. For each group we adjusted a linear and three non-linear models (log, power and 

hyperbole). Since the linear model (eq. 2 of main text) showed the best overall performance 

we used it in our model to change the temperature of cells with storage structures as explained 

on the main text. Table 1 shows the values of the parameters of the linear model of each group 

of altitudes. 

 

Table 1. Parameter values of the linear model relating temperatures inside and outside storage 

structures.  

Altitude (m.a.s.l.)     a     b 

2800 - 2899 -0.144 13.552 

2900 - 2999 -0.144* 13.552* 

3000 - 3099 -0.192 13.598 

3100 - 3199 -0.183 12.636 

3200 - 3299 -0.079 9.864 

≥ 3300 -0.021 8.893 

* Since the survey was not done at this altitudinal range we used the same parameters of the lower altitude range 
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Abstract 

Oviposition is one of the main components of insects’ fitness and population dynamics and is 

highly influenced by environmental temperature. Understanding the functional relationship 

between oviposition and temperature may help in the development of multigenerational 

population dynamics models which predictions  are very useful in the deployment of more 

efficient pest control programs. Temperature variability is an important characteristic of 

landscapes, and accurate understanding of its influence on insects’ dynamics could enhance 

robustness and realism of such models. In this contribution we modeled potato moth species’ 

oviposition from data obtained at controlled constant temperatures and compared simulated 

oviposition under both constant and variable temperature regime. Our results show that the 

form of the temperature-related total oviposition curvediffers  at constant and fluctuating 

temperatures. Total number of eggs was generally lower at optimal mean temperatures with 

fluctuating regimes and higher at extreme temperatures compared to constant regimes. 

Running our model with real temperature regimes obtained with data-loggers in the field and 

in potato storage structures at several sites in Ecuador revealed that the temperature buffering 

effect of storage structures is beneficial for moth oviposition at low altitudes, whereas it is 

detrimental at cold, high-altitude sites.  We discuss our approach in light of similar approaches 

developed for other insects and mention possible implications of our results in a context of 

pest ecology under global change. 

Key words 

Fecundity, Phthorimaea operculella, Potato Tuber Moth, oviposition decay rate, oviposition 

modeling, temperature variability, Symmetrischema tangolias, Tecia solanivora 
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Introduction 

Temperature profoundly affects behavior, physiology, and fitness of organisms (Angilletta 

2009, Angilletta et al. 2010). Being ectotherms, insects’ dynamics are strongly influenced by 

temperature of their environment. Precise information on insects’ thermal responses helps 

predicting their phenology and distribution, a knowledge of great utility in the field of pest 

management (Régnière et al. 2009, Shea et al. 2010, Travis et al. 2011). 

Oviposition is one of the main components of insects’ fitness and population dynamics 

(Berger et al. 2008). It is highly influenced by temperature, although other abiotic and biotic 

factors, such as light intensity (Wyatt and Brown 1977), nutrition (Leather and Dixon 1982, 

Kaakeh and Dutcher 1993) and mating status (Steigenga and Fischer 2007) may confound its 

effects. Understanding the functional relationship between oviposition and temperature may 

help in the development of multigenerational phenology or population dynamics models.  

 Insects’ responses to temperature may differ if exposed to constant or fluctuating 

temperature regimes (Gilchrist 1995, Gilbert et al. 2004, Davis et al. 2006, Adamo and Lovett 

2011). Thus, insect population dynamics in highly variable environmental conditions may 

differ from those in more constant ones. This may be especially the case in environments, like 

the Tropical Andes, where temperatures tend to approach the physiological thresholds of 

insects (Dangles et al. 2008).  Therefore, predictions of models based on insects response 

measured in constant temperatures may yield different and less realistic results from 

predictions of models that include the effect of temperature fluctuation on insect biology.   

 Potato cultures of the North Andean region are threatened by three species of Potato 

Tuber Moth (PTM), Phthorimaea operculella (Zeller), Symmetrischema tangolias (Gyen) and 

Tecia solanivora (Povolny), that have been invading the region for the past 30 years.  Few 

attempts have been made to model these species dynamics (Sporleder et al. 2004, Dangles et 

al. 2008) and none have investigated the influence of the high levels of temperature variability 

characteristic of the region. The purpose of this study was to model these species’ 

temperature-related oviposition. The model was parameterized with data obtained at 

controlled constant temperatures and used to simulate oviposition under constant and variable 

temperature regimes. This allowed us to predict the influence that temperature variability has 

on these species’ oviposition dynamics.  
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Materials and Methods 

Modeling oviposition 

To model PTM oviposition rate we used data on temperature-related cumulative oviposition. 

For P. operculella we used data published by Sporleder et al. (2004, their Fig. 6a) who 

measured oviposition under seven constant temperautres (11, 15, 16, 20, 23, 26.2, 30 °C) . For 

the other two species we used oviposition data from several females raised at 12, 19 and 28 

°C in climatic chambers (HACEB climatic chamber, Medellin, Colombia, for the trials at 12 

°C and Memmert incubator, model INB-500, Schwabach, Germany, for those at 19 and 28 

°C). Oviposition data for the three species is shown in Figure 1. We are not aware of any 

oviposition rate data obtained at fluctuating temperatures for these species (in fact they are 

non-existent for most species) although we recognize that further validation of the model with 

data obtained at fluctuating environments would be a necessary further step for our study (see 

Gilbert et al. 2004).  

 We modeled oviposition following the approach developed by Régnière et al. 

(submitted). These authors considered that as females age and exhaust their reproductive 

resources, their daily oviposition rate declines, which causes cumulative oviposition to follow 

a diminishing return pattern.  Each unit of time females lay a constant proportion, κ, of their 

remaining fecundity, Ft. This proportion may be a function of temperature κ(T,B), with B a set 

of parameters. Oviposition rate thus is: 

( ) t
t FBT

dt
dF ,κ−=           (1) 

In many species oviposition occurs after a pre-oviposition period, at time t0, during which 

females mate and complete maturation. Solving (1) over time under constant temperature 

yields:  

( )( )0,
0

ttBT
t eFF −−= κ           (2) 

where F0 is mean (potential) fecundity. Number of eggs laid accumulating from the onset of 

the oviposition period to time t is: 

( )( )( )0,
0 1 ttBT

t eFO −−−= κ          (3) 
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which produces the familiar diminishing return shape of most cumulative oviposition curves 

reported in the literature.  

 We used equation (3) to model P. operculella oviposition at each temperature. We 

fixed F0 from our experimental data, and estimated the values of κ and t0 by non-linear least 

squares using Microsoft Excel’s Solver ®. In the case of S. tangolias and T. solanivora, for 

which we disposed of data for several females for each temperature treatment, we assumed a 

lognormal distribution of fecundities among individuals. The “lack of fit” between the 

theoretical oviposition rate at each temperature treatment j (eq. 3) and the actual oviposition 

of each individual i was termed δij (with variance σδ2). This lead to: 

( )( )( )0,
0 1 ttBT

ijij eFO −−−= κδ          (4) 

For these two species we used equation (4) to estimate F0, σδ and κ through maximum 

likelihood, using Microsoft Excel’s Solver ®, knowing that the probability of Oij eggs being 

laid at temperature T from the onset of oviposition to time t is a lognormal cumulative density 

function of δ: 

( )
2

2
1

22
1 x

ij ef
−

=
δπσδ

δ          (5) 

where ( )( ) δδ σσδ 2/ln 2+= ijx . The negative log likelihood to be minimized is: 

( )[ ]∑∑−=
i j

fLL δln           (6) 

For the three species we obtained different values for t0, F0, and κ, for each temperature. We 

therefore had seven values for P. operculella and three for S. tangolias and T. solanivora (one 

value per temperature treatment). We then examined the relationship between those parameter 

values and temperature. There was no clear relationship between pre-oviposition period and 

temperature. Thus, the value of t0 was left as a single, temperature independent constant 

which corresponded to the mean pre-oviposition period across all temperatures. 

 Sporleder et al (2004; their Fig. 6b) approximated the relationship between F0 and 

temperature by a second degree polynomial (three parameters). We chose to use a more 

flexible parabolic function with four parameters: 
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x
oTTbAbsaF −+=0          (7) 

where a is the maximum, b determines the width of the parabola, To is optimal temperature 

and x determines the flatness of the maximum. The addition of a fourth parameter allows a 

greater variety of parabolic shapes. Total fecundity data were adjusted to equation 3 through 

least sum of squares. In the case of S. tangolias and T. solanivora we adjusted this equation to 

published fecundity data (Notz 1995, Torres et al. 1997, Herrera 1998, Palacios et al. 1998, 

Álvarez and Trillos 1999, Castillo 2005) to obtain a general temperature-related fecundity 

curve for these species. 

 The relationship between κ and temperature was fitted to the Sharpe and DeMichele 

model modified by Schoolfield et al. (1981).  

  
25

273.15 1 1exp
298.15 1.987 298.15 273.15( )

1 1 1 11 exp exp
1.987 273.15 1.987 273.15

A

L H

L H

HT
TT

H H
T T T T

ρ
κ

+ ⎡ ⎤⎛ ⎞−⎜ ⎟⎢ ⎥+⎝ ⎠⎣ ⎦=
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞

+ − + −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

     (8) 

This model was developed to simulate temperature-dependent developmental rates and we 

used it to model PTM developmental rates (see Appendix S3 of this dissertation). In the case 

of P. operculella initial values of the model’s six parameters were estimated by non-linear 

least squares with Microsoft Excel’s Solver ®. For the other two species, since we only had 

three values for κ (at 12, 19 and 28 °C) we varied only parameters ρ25 and TL and kept the 

others adjusted for P. operculella’s oviposition decay rate. Parameters were adjusted through 

non-linear least squares. 

 Finally, the full model was fitted to the entire datasets of each species: 

[ ] ( )( )[ ]0,1 ttBTx
ot TTbAbsaO −−−−+= κe                               (9) 

with t>t0. 

The 11 parameters of the full model (a, b, To, x, ρ25, HA, HL, TL, HH, TH  and t0) were estimated 

simultaneously by non-linear least-squares using Microsoft Excel’s Solver ®.  
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Simulating oviposition under fluctuating temperatures 

To understand how fluctuating temperatures influence female oviposition simulated by our 

approach we modeled PTM oviposition with a varying temperature regime. Equation (2) was 

used to determine oviposition rate over small time steps of  Δt (fraction of a day). Because the 

time step is small temperature can be considered constant, so that: 

( ) ( )( )[ ] ( ) ( )( )[ ]tttBTttBT
tttttt TFTFOOE Δ−−−−−

Δ−Δ− −−−=−= 00 ,
0

,
0, 11 κκ ee                (10)

  

which, rearranged algebraically gives: 

 ( ) ( )( ) ( )( )[ ]00 ,,
0,

ttBTtttBT
ttt TFE −−Δ−−−

Δ− −= κκ ee             (11) 

Cumulative oviposition then, is: 

   ∑ Δ−= tttt EO ,                   (12) 

We ran simulations with a time step of Δt = 0.2 days, with temperature T fluctuating 

on a 24 h daily cycle along a sine curve, which is the rough pattern observed in the 

Ecuadorian sierra (see Dangles et al. 2008). We simulated moth oviposition for 250 time steps 

(i.e. 50 days, which corresponds to the maximum longevity observed for females raised in the 

laboratory). We examined the effect of regimes with several mean temperatures (8, 10, 12 14, 

16, 18, 20, 22, and 24 °C), and with different levels of temperature variation (SD= 1, 5 and 10 

°C), which resulted in 27 different scenarios (9 mean temperatures times three SD’s). For 

each scenario we extracted values of F0 and κ for each time-step, and the total oviposition, Ot, 

at the end of the simulation. This allowed comparing the variation of these variables among 

the different scenarios. We compared F0 and κ across the different scenarios with a Kruskal-

Wallis test and used a Mann-Whitney post-hoc analysis to compare pairs of scenarios.  

Simulating oviposition under real temperatures 

We were also interested in understanding the influence of actual temperature variation and of 

the temperature buffering effect of potato storage structures (Crespo-Pérez et al. accepted) on 

PTM oviposition dynamics. For this purpose, we simulated PTM oviposition under actual 

temperature regimes obtained from data-loggers’ measurements over one year both in the 
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field and inside potato storage structures at 3 different sites, located at three different altitudes 

(2700, 3000, 3300) in the Ecuadorian Andes.  

As for the theoretical temperature regimes, we simulated moth oviposition for 250 

time steps with each time step corresponding to 1/5 of a day. We also extracted the values of 

F0 and κ for each time step and total oviposition, Ot, a at the end of the simulations, to 

compare their variation inside and outside the potato storage structures and among the 

different altitudes. We used a Kruskal-Wallis test and a Mann-Whitney post-hoc analysis to 

evaluate the differences in median values of the parameters between the different temperature 

regimes used for the simulations.  

Results 

Modeling oviposition under constant temperature regime 

Fitting equation (3) to P. operculella data and (4) to S. tangolias and T. solanivora’s allowed 

us to model cumulative oviposition at several constant temperatures. Values of variables F0, 

t0, and κ (and σδ for S. tangolias and T. solanivora) for each species and temperature are 

shown in Table 1.  

We used equation (7) to describe the three species’ temperature-related total fecundity 

data. This allowed us to obtain bell-shaped curves, with optimal temperatures in the middle of 

the range and deleterious minimum and maximum temperatures (Fig. 2, and see Table 2 for 

parameter values). There was a high variability among the total fecundity data, especially 

among that of T. solanivora, for which the adjustment was less optimal (R2 = 0.75) than that 

for the other two species’ data (R2 = 0.89 and 0.97 for P. operculella and S. tangolias, 

respectively). 

Although values of κ of P. operculella provided no evidence of decay at high 

temperature, Sharpe and DeMichele’s equation (modified by Schoolfield et al. 1981) allowed 

us to obtain upper threshold behavior at high temperatures without goodness-of-fit loss (R² = 

0.95, Fig. 3, Table 2). The adjustment of this equation to S. tangolias and T. solanivora’s 

oviposition decay rate values was less optimal (R2 = 0.86 and 0.59, respectively), but the 

resulting curves did present a high-temperature decay (Fig. 3, Table 2).  
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Cumulative oviposition predicted with equation (7) fitted well to observed cumulative 

oviposition of the three species obtained in laboratory at constant temperature (Fig. 4). Most 

of the error came from the variability in the relationship between F0 and temperature. 

Simulating oviposition under fluctuating temperatures 

We found no clear pattern in the variation of F0 among the different levels of temperature 

fluctuation and different mean temperatures (results not shown). Our results for the 

oviposition decay rate κ showed that increased level of fluctuation in temperature (i.e. 

increasing the standard deviation) produced a linear increase in the level of fluctuation of κ 

(i.e. its range) with R2 > 0.96 for all mean temperatures for the three species. Box plots 

showing variation of κ across different levels of variation (SD= 1, 5 and 10) and with four 

different mean temperatures can be seen in Fig. 5. According to the Kruskall-Wallis analyses 

there were highly significant differences among the median values of κ of the oviposition 

scenarios tested within each species (H = 967.5, P < 0.001; H = 967.6, P < 0.001; H = 1163, P 

< 0.001, for P. operculella, S. tangolias and T. solanivora, respectively). Mann-Whitney pair-

wise comparisons showed that for P. operculella and S. tangolias, SD “scenarios” within each 

mean temperature were not significantly different, whereas for T. solanivora, we found 

significant differences among the scenarios with mean temperatures of 12, 16 and 20 °C (Fig. 

5).  

As a general pattern, we found that median values of κ varied according to the shape 

of the temperature-related curves of κ (Fig. 3). In the case of P. operculella, where optimal 

temperature for κ (c.a. 36 °C) is far beyond the mean temperatures tested, this parameter 

showed a general increase with increasing mean temperature and larger ranges of values at 

higher temperatures (Fig. 5). In the other two species, in contrast, approaching optimal 

temperatures caused κ values to stabilize or to decrease. This was, for example the case for κ 

values for T. solanivora with mean temperatures of 16 and 20 °C, where large fluctuation in 

temperatures caused conditions to approach the suboptimal high temperature region for κ. 

Comparing total fecundity Ot between the different levels of temperature fluctuation 

revealed that the relationship between oviposition and temperature changed when including 

fluctuating temperature regimes and varying the level of fluctuation (Fig. 6). For instance, 

with low levels of variation (SD = 1 °C) optimum temperature for T. solanivora was between 

c.a. 15 and 21 °C, whereas with a standard deviation of 5 °C the optimum temperature range 
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became narrower (between c.a. 17 and 19 °C). Also, fluctuating temperatures caused S. 

tangolias total fecundity to decrease from 223 (with SD = 1 °C) to 82 eggs (with SD = 10 °C). 

In general, total fecundity tended to decrease and become somewhat constant with increasing 

levels of fluctuation. It is also important to note that in several cases oviposition near extreme 

high and low temperatures was higher in the regimes with higher temperature variation (i.e. 

SD = 5 and 10 °C) than that with lower variation (SD = 1 °C).  

 Simulating oviposition under real temperatures 

We simulated moth oviposition with real temperature regimes from both the field and storage 

structures from three sites located at three different altitudes. This gave a total of six real 

temperature scenarios. We found no clear pattern in the variation of F0 among the scenarios. 

Kruskal-Wallis analyses revealed significant differences in the oviposition decay rate among  

the different temperature regimes for the three species (H = 796.7, P < 0.001; H = 796.7, P < 

0.001; H =796.9, P < 0.001, for P. operculella, S. tangolias and T. solanivora, respectively).  

The variation in the decay rate was always higher in the field than inside the storage structures 

(Fig. 7), undoubtedly due to higher temperature variation in the former. We found a similar 

pattern in relation to altitude, where the level of variation in κ decreased with increasing 

altitude.  Even though this high variation caused κ to often attain low values, it also allowed it 

to attain high values, which in the end, caused the mean values of κ to be higher in the field 

than inside the storage structures. Only in the case of T. solanivora at 2700 m.a.s.l. was κ, on 

average, higher in the storage structure than in the field.  

 The effect of the lower levels of temperature variability inside storage structures 

differed depending on the altitude considered. For instance, females of the three species were 

able to lay more eggs during their lifetime inside storage structures than in the field at 2700 

m.a.s.l. (Fig. 8). At 3000 m.a.s.l., however, this pattern changed for P. operculella and S. 

tangolias, whose females laid more eggs in the field. Temperatures inside storage structures at 

3300 m.a.s.l. were very low and hampered female oviposition almost completely, whereas in 

the field, females were able to lay some eggs probably because higher temperature variation 

in the field presented periods of higher temperatures that allowed some oviposition.  
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Discussion 

Precise knowledge of temperature-related oviposition dynamics contributes to the 

development of accurate and realistic multigenerational phenological models (Sporleder et al. 

2004). These models allow simulating insects’ life history events both temporally and 

spatially and are powerful tools for efficient pest management programs (Régnière et al. 2009, 

Shea et al. 2010, Travis et al. 2011).  

 In spite of their importance as agricultural pests, potato tuber moth’s population 

dynamics have been poorly studied and information on their temperature-related oviposition 

is scarce and incomplete (Notz 1995, Torres et al. 1997, Herrera 1998, Palacios et al. 1998, 

Sporleder et al. 2004). The approach used in this study allowed us to model PTM oviposition 

from laboratory data of females raised under constant temperatures. Our model was able to 

simulate the deleterious effect of extreme temperatures on fecundity already observed for 

females of P. operculella (Roux 1993, Sporleder et al. 2004) and of other insects (Kim and 

Lee 2003, Kuo et al. 2006). Accurately modeling insects’ physiological responses near 

threshold temperatures is of prime importance if one wishes to enhance the precision and 

realism of the predictions, or if simulations are to be made with fluctuating temperature 

regimes (Régnière et al. submitted). This is especially important if one simulates processes in 

environments where temperature approaches extremes.  

In this contribution, including the diminishing return pattern of cumulative oviposition 

allowed us to simulate PTM oviposition over time. A similar approach was used by Kim and 

Lee (2003) who employed a diminishing return type of function to model age-specific 

cumulative oviposition and combined it with temperature dependent total fecundity to model 

Carposina sasakii’s (Lepidoptera: Carposinidae) cumulative oviposition. Such approaches are 

useful for simulating oviposition over consecutive time-steps, and the non-linearity of the 

diminishing return curves allows realistic predictions near threshold temperatures (Kim and 

Lee 2003). 

  Temperature variability strongly influences poikilotherms population dynamics 

(Gilchrist 1995, Gilbert et al. 2004, Davis et al. 2006, Adamo and Lovett 2011). Models 

capable of simulating those dynamics under fluctuating temperatures are thus very useful. 

Gilbert et al. (2004) compared three different models to simulate Mountain Pine Beetle 
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development and highlighted the ability of one of those models (the Extended von Foerster 

model) to realistically model development under varying temperatures.  

 The approach presented in this contribution allowed us to simulate PTM daily 

oviposition under fluctuating temperature regimes and to understand the influence of 

temperature variability on oviposition dynamics. Our results showed that simulated 

oviposition dynamics at fluctuating temperatures greatly differed from those at constant 

temperatures. We found, for instance, that fluctuating temperatures sometimes produce 

changes in the optimal temperature range for maximum oviposition and may allow a higher 

number of eggs to be laid at temperature extremes. This result is in agreement with results 

found by Davis et al. (2006) for the green peach aphid Myzus persicae and by Adamo and 

Lovett (2011) for the cricket Gryllus texensis who found that fluctuating temperatures allow 

or enhance process rates like development, survival and reproduction at high mean 

temperatures, where these processes are hampered at constant temperature regimes.  

Thorough understanding of the influence of temperature fluctuation on insects’ 

dynamics is of extreme importance in highly variable environments, like the tropical Andes, 

where daily temperature variations are higher than annual variations (Dangles et al. 2008). 

High human activity in this region, and the consequent increase of human constructions that 

buffer field temperatures, requires precise knowledge of the differences in population 

dynamics between stable and unstable environments. Our study showed that the influence of 

storage structures on PTM oviposition varied depending on the altitude and on the species 

considered. Our results confirmed those of Keller (2003), who based on farmer interviews, 

found that some high altitude stores at the Mantaro Valley (central Peru) were less infested by 

the potato tuber moth, Symmetrischema tangolias, than lower altitude stores, probably due to 

the constant low temperatures inside the former. Accurate descriptions of insects’ dynamics in 

relation to temperature and its variation are also of primary importance in a climate change 

context. Climate change models predict that in the future organisms  will be subject not only 

to higher temperatures but also to larger temperature variability (IPCC 2007). 

This study constitutes a novel and interesting approach to modeling oviposition in 

heterogeneous environments and  presents interesting insights on the influence of such 

heterogeneity on oviposition dynamics. However, results remain theoretical since they have 

not been validated with actual data of moth oviposition in fluctuating temperature regime. We 
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are not aware of the existence of such data for PTM. A way of testing this modeling approach 

could be to collect data on moth oviposition dynamics inside and outside potato storage 

structures and compare those results to our simulations.  

 

Acknowledgments 

This work was part of the research conducted within the project Innovative Approaches for 

integrated Pest Management in changing Andes (C09-031) funded by the McKnight 

Foundation. This work was part of VCP’s doctoral project, financed by grants from the 

French Embassy in Ecuador and from the Département Soutien et Formation des 

communautés scientifiques du Sud (DSF) of the IRD. We thank Mario Herrera for his help 

with lab work.  



108 

 

References 

Adamo, S. A., and M. M. E. Lovett. 2011. Some like it hot: the effects of climate change on 

reproduction, immune function and disease resistance in the cricket Gryllus texensis. 

Journal of Experimental Biology 214:1997-2004. 

Álvarez, G., and O. Trillos. 1999. Estudio sobre la Biología y Cría de la Polilla de la Papa 

Tecia solanivora Povolny. Plan Estratégico para el Manejo de Tecia solanivora en 

Colombia. Ministerio de Agricultura y Desarrollo Rural Universidad Nacional de 

Colombia, Bogota. 

Angilletta, M. J. 2009. Thermal Adaptation: a theoretical and empirical synthesis. Oxford 

University Press, New York. 

Angilletta, M. J., R. B. Huey, and M. R. Frazier. 2010. Thermodynamic Effects on 

Organismal Performance: Is Hotter Better? Physiological and Biochemical Zoology 

83:197-206. 

Berger, D., R. Walters, and K. Gotthard. 2008. What limits insect fecundity? Body size- and 

temperature-dependent egg maturation and oviposition in a butterfly. Functional 

Ecology 22:523-529. 

Castillo, G. M. 2005. Determinación del ciclo de vida de las polillas de la papa 

Symmetrischema tangolias (Gyen) y Tecia solanivora (Povolny) bajo condiciones 

controladas de laboratorio. Universidad Central del Ecuador, Quito. 

Crespo-Pérez, V., F. Rebaudo, J.-F. Silvain, and O. Dangles. accepted. Modeling invasive 

species spread in complex landscapes: the case of potato moth in Ecuador. Landscape 

Ecology. 

Dangles, O., C. Carpio, A. R. Barragan, J. L. Zeddam, and J. F. Silvain. 2008. Temperature as 

a key driver of ecological sorting among invasive pest species in the tropical Andes. 

Ecol Appl 18:1795-1809. 

Davis, J. A., E. B. Radcliffe, and D. W. Ragsdale. 2006. Effects of high and fluctuating 

temperatures on Myzus persicae (Hemiptera : Aphididae). Environmental Entomology 

35:1461-1468. 

Gilbert, E., J. A. Powell, J. A. Logan, and B. J. Bentz. 2004. Comparison of three models 

predicting developmental milestones given environmental and individual variation. 

Bulletin of Mathematical Biology 66:1821-1850. 



109 

 

Gilchrist, G. W. 1995. Specialists and Generalists in Changing Environments .1. Fitness 

Landscapes of Thermal Sensitivity. American Naturalist 146:252-270. 

Herrera, F. 1998. La polilla guatemalteca de la papa: biología, comportamiento y prácticas de 

manejo integrado. Corporación Colombiana de Investigación Agropecuaria 

(CORPOICA), Bogotá, Colombia. 

IPCC. 2007. Working group I report, climate change 2007: ‘‘the physical science basis’’. 

Paris. 

Kaakeh, W., and J. D. Dutcher. 1993. Rates of increase and probing behaviour of 

Acyrthosiphon pisum (Homoptera, Aphididae) on preferred and nonpreferred host 

cover crops. Environmental Entomology 22:1016-1021. 

Keller, S. 2003. Integrated Pest Management of the Potato Tuber Moth in Cropping Systems 

of Different Agroecological Zones. Margraf Publishers, Germany. 

Kim, D. S., and J. H. Lee. 2003. Oviposition model of Carposina sasakii (Lepidoptera : 

Carposinidae). Ecological Modelling 162:145-153. 

Kuo, M. H., M. C. Chiu, and J. J. Perng. 2006. Temperature effects on life history traits of the 

corn leaf aphid, Rhopalosiphum maidis (Homoptera : Aphididae) on corn in Taiwan. 

Applied Entomology and Zoology 41:171-177. 

Leather, S. R., and A. F. G. Dixon. 1982. Secondary host preferences and reproductive 

activity of the bird cherry-oat aphid, Rhopalosiphum padi. Annals of Applied Biology 

101:219-228. 

Notz, A. 1995. Influencia de la temperatura sobre la biologia de Tecia solanivora (Povolny) 

(Lepidoptera:  Gelechiidae) criadas en tuberculos de papa Solanum tuberosum L. 

Boletín de Entomología Venezolana 11:49-54. 

Palacios, M., J. Tenorio, M. Vera, F. Zevallos, and A. Lagnaoui. 1998. Population dynamics 

of the Andean potato tuber moth, Symmetrischema tangolias (Gyen), in three different 

agro-ecosystems in Peru. CIP - Program Report:153-160. 

Régnière, J., V. Nealis, and K. Porter. 2009. Climate suitability and management of the gypsy 

moth invasion into Canada. Biol Invasions 11:135-148. 

Régnière, J., J. Powell, B. Bentz, and V. Nealis. submitted. Temperature responses of insects: 

design of experiments, data analysis and modeling. Ecologica Applications. 

Roux, O. 1993. Population ecology of potato tuber moth Phthorimaea operculella (Zeller) 

(Lepidoptera:Gelechiidae) and design of an integrated pest management program in 

Tunisia. SWISS FEDERAL INSTITUTE OF TECHNOLOGY, Zurich. 



110 

 

Schoolfield, R. M., P. J. H. Sharpe, and C. E. Magnuson. 1981. Non-Linear Regression of 

Biological Temperature-Dependent Rate Models Based on Absolute Reaction-Rate 

Theory. Journal of Theoretical Biology 88:719-731. 

Shea, K., E. Jongejans, O. Skarpaas, D. Kelly, and A. W. Sheppard. 2010. Optimal 

management strategies to control local population growth or population spread may 

not be the same. Ecological Applications 20:1148-1161. 

Sporleder, M., J. Kroschel, M. R. G. Quispe, and A. Lagnaoui. 2004. A temperature-based 

simulation model for the potato tuberworm, Phthorimaea operculella Zeller 

(Lepidoptera; gelechiidae). Environmental Entomology 33:477-486. 

Steigenga, M. J., and K. Fischer. 2007. Ovarian dynamics, egg size, and egg number in 

relation to temperature and mating status in a butterfly. Entomologia Experimentalis 

Et Applicata 125:195-203. 

Torres, W., A. Notz, and L. Valencia. 1997. Cliclo de vida y otros aspectos de la biologia de 

la polilla de la papa Tecia solanivora (Povolny) (Lepidoptera: Gelechiidae) en el 

estado Tachira, Venezuela. Boletín de Entomología Venezolana 12:81-94. 

Travis, J. M. J., C. M. Harris, K. J. Park, and J. M. Bullock. 2011. Improving prediction and 

management of range expansions by combining analytical and individual-based 

modelling approaches. Methods in Ecology and Evolution:no-no. 

Wyatt, I. J., and S. J. Brown. 1977. Influence of light intensity, daylength and temperature on 

increase rates of 4 glasshouse aphids. Journal of Applied Ecology 14:391-399. 

 

 



111 

 

 



112 

 

Table 2. Parameter estimates of the oviposition model for the three species. 

Parameter P. operculella S. tangolias T. solanivora 

To 20.513 15.583 18.14837 

a 151.704 229.363 291.982 

b -0.002 -8.434 -0.001 

x 4.706 1.769 6.200 

a0 0.515 0.004 0.455 

ρ25 0.416 0.690 0.580 

HA 15355.96 15355.96 15355.96 

HL -59927.9 -59927.9 -59927.9 

TL 256.628 256.628 256.628 

HH 30000.01 30000.01 30000.01 

TH 309.43 309.43 309.43 
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Figure captions 

Fig. 1. Observed cumulative oviposition at different constant temperatures. Data for P. 

operculella come from Sporleder et al. (2004) and for the other two species from experiments 

performed at our laboratory.  

Fig. 2. Relationship between total fecundity and temperature, adjusted with equation 7. Total 

fecundity data for P. operculella come from Sporleder et al. (2004), and for the other 2 

species from various literature sources (Notz 1995, Torres et al. 1997, Herrera 1998, Palacios 

et al. 1998, Álvarez and Trillos 1999, Castillo 2005).  

Fig. 3. Relationship between predicted oviposition decay rate (κ) and temperature, adjusted to 

the Sharpe and DeMichel model.  

Fig. 4. Predicted versus observed cumulative oviposition. The graphs group cumulative 

oviposition data obtained at 7 different temperatures for P. operculella and three for S. 

tangolias and T. solanivora.   

Fig. 5. Variation of the predicted oviposition decay rate (κ)  under fluctuating temperature 

regimes with different levels of variation (SD= 1, 5 and 10) and four different mean 

temperatures. 

Fig. 6. Predicted total fecundity of females of the three species under fluctuating temperature 

regimes with different levels of variation and several mean temperatures. 

Fig. 7. Predicted oviposition decay rate (κ) under actual temperature regimes inside potato 

storage structures and in potato fields at three sites located at different altitudes in the 

Ecuadorian Andes. 

Fig. 8. Predicted total fecundity under actual temperature regimes inside potato storage 

structures and in potato fields at three sites located at different altitudes in the Ecuadorian 

Andes. 
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Abstract 

 Survival probability is an important component of fitness. Insect survival is mainly 

influenced by temperature and is commonly modeled with tolerance curves which allow the 

identification of favorable sites for pest establishment. They are therefore useful tools within 

insect pest management programs. The tropical Andes are increasingly threatened by 

agricultural pests but studies and data on their temperature-related dynamics are scarce. This 

hampers the development of adequate population dynamics models that could potentially 

contribute to pest management strategies. Here we present a new model relating survival to 

temperature and compare its performance to two published models. We adjusted the models 

to survival data of three species of potato tuber moth (PTM), some major pests in the region. 

We were particularly interested in their ability to simulate the deleterious effect of extreme 

temperatures even when adjusted to a dataset that did not include extreme temperature 

conditions. To evaluate model performance we considered both goodness-of-fit and 

robustness. The latter consisted in evaluating their ability to generate the parabolic shape 

characteristic of temperature related survival with high mortality at extreme temperatures and 

to predict the actual altitudinal limits of the species in the Ecuadorian Andes. We found that 

even though our model did not always provide the best fit to the data, it predicted extreme 

temperature mortality and altitudinal limits better than the other two models and with a very 

good accuracy. Our study shows that the ability to accurately represent the physiological 

limits of species is important to provide robust predictions of invasive pests’ potential 

distribution, particularly in places where temperatures approach lethal extremes. The value of 

the model presented here lies in its ability to simulate accurate thermal tolerance curves even 

with small data sets, which is useful in places like the Tropical Andes (and probably in other 

tropical regions), where adequate pest management is urgent but data are scarce.  

 

Key words 

Agricultural pests, Phthorimaea operculella, Potato Tuber Moth, Symmetrischema tangolias, 

Tecia solanivora, temperature-related survival 
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Introduction 

A species’ fitness in a particular ecosystem depends on its responses to environmental 

conditions (Gilchrist 1995). Survival probability reflects the level of tolerance of organisms to 

the environment and is an important component of fitness (Huey and Kingsolver 1989, 

Gilchrist 1995). The survival of ectotherms, such as insects, is mainly influenced by 

temperature (Drost et al. 1998) and occurs within a definite temperature range, with an 

optimum between high and low lethal temperatures (Janisch 1932, Price 1997, Angilletta et 

al. 2002, Angilletta 2009). Temperature-related survival in insects is commonly modeled with 

tolerance curves, which are functions that describe survival rate along a temperature 

continuum (Gilchrist 1995). Determining such tolerance curves is useful within insect pest 

management programs since they allow the identification of vulnerable sites when coupled to 

temperature regimes that occur in a particular landscape (Logan and Powell 2001, Logan et al. 

2007).   

Most studies of temperature-dependent process rates in insect pests come from temperate 

regions (Régnière and Sharov 1998, Régnière and Bentz 2007). Tropical regions, in particular 

mountainous ones have received much less attention although they represent important places 

for agriculture development. These regions are characterized by an unmarked seasonality and 

high environmental heterogeneity along the altitudinal gradient (Dangles et al. 2008). This, 

along with high levels of human activities mostly related to agriculture (Nyssen et al. 2009), 

allows pests to thrive and propagate causing considerable losses in developing countries 

(Dangles et al. 2010). These regions are thus in urgent need of accurate and efficient risk 

assessment tools that will allow governments to focus their management effort on the most 

vulnerable sites (Perez et al. 2010). However, the lack of data on dynamics of many pest 

species threatening agricultural landscapes in the tropics often hinders the development of 

adequate pest dynamics models needed for pest risk assessment.  

The objective of this study was to compare the performance of three models to simulate the 

temperature-related survival of the three immature stages (eggs, larvae, and pupae) of the 

three species of potato tuber moth (PTM), Phtorimaea operculella (Zeller), Symmetrischema 

tangolias (Gyen), and  Tecia solanivora (Povolny), that are serious pests of potatoes in the 

Northern Andean region (Dangles et al. 2010).  Data on extreme lethal temperatures are 

seldom available and their absence is often a drawback for accurate modeling of species 
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survival rate. In this work we evaluated the ability of various models to predict the deleterious 

effect of temperature even when adjusted to a dataset that does not include data on lethal 

temperatures. Accurately estimating lethal temperatures is important in places where 

temperatures may approach such levels. High altitude sites in the tropical Andes, for example, 

present low mean temperatures that may reduce the pests’ survival and thus restrict their 

distribution (Sporleder et al. 2004).  

The first model we tested was the Sharpe and DeMichele’s model (Sharpe and DeMichele 

1977, modified by Schoolfield et al. 1981) originally developed to describe poikilotherm 

development rate. Although widely used to model ectotherm development, in particular that 

of the PTM P. operculella, its large number of parameters may be difficult to estimate when 

fitted to a small number of data points not covering a wide range of temperatures. The second 

model we evaluated was a second order polynomial function used by Sporleder et al. (2004) 

to describe mortality rate of P. operculella. Even though these authors managed to adjust this 

model fairly well to their data this model may fail to produce the bell shaped form typical of 

survival curve. Finally, we tested the performance of a model developed by Régnière et al. 

(submitted). This model considers the effect of temperature on survival rate in conjunction 

with development time, both determining the overall temperature related survival.  

 

Materials and methods 

Potato tuber moths 

Within the last 30 years Phtorimaea operculella (Zeller), Symmetrischema tangolias (Gyen), 

and Tecia solanivora (Povolny) have been invading the potato fields of the Northern Andes 

and represent today one of the most serious agricultural pest problems in the region (Dangles 

et al. 2010). Undoubtedly due to its worldwide distribution, P. operculella has been the most 

studied (Rondon 2010). In the Northern Andes  the three species have been observed co-

occurring in some places, even within the same potato storage structure or sack (Dangles et al. 

2008). Although little is known about their interaction, controlled laboratory experiments 

report either competition or facilitation between them, depending on the temperature and on 

the sequence of introduction (Dangles et al. 2009). The degree of damage to field or stored 

potato thus depends on which species are present and on the sequence of invasion. 
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Furthermore, since they have proven to respond differently to control strategies (for instance 

to a given granulovirus isolate used for biological control, Sporleder et al. 2005, Rebaudo et 

al. 2006), their coexistence may complicate the establishment and success of control tactics. 

These three species seem to differ in their physiological responses to temperature (Dangles et 

al. 2008), which play an essential role in defining their geographic distribution along the 

highly environmentally heterogeneous Northern Andean landscapes. Therefore, integrated 

pest management of these pests will greatly benefit from a thorough understanding of their 

thermal niches. 

Data compilation 

 To study the influence of temperature on survival of the immature stages (egg, larva, 

and pupa) of the three species of potato tuber moth we compiled published data of laboratory 

experiments performed in the Andean region (Table 1). From these sources, only data 

acquired under constant temperatures (± 2°C) were considered. In all studies, relative 

humidity ranged from 60 to 90%.  

Modeling survival 

 Temperature-related survival has been shown to have a parabolic shape, with low 

survival at low and high temperatures (van der Have 2002). In this study, we assess the 

convenience of three different models for simulating temperature related survival.  

 

1) Sharpe and DeMichele’s model 

 This model was developed by Sharpe and DeMichele (1977) to describe the kinetics of 

insect development based on several assumptions about the underlying developmental control 

enzymes. It has been widely used to describe poikilotherms’ temperature- dependent 

development (Gilbert et al. 2004). We decided to include Sharpe and DeMichele’s model (as 

modified by Schoolfield et al. 1981) in our study because of its biological significance and 

because it has been successfully used to simulate tuber moth development and survival in 

other studies (Roux 1993, Sporleder et al. 2004). The equation of survival is: 
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            (1) 

 

with T mean temperature expressed in °K, R the universal gas constant (1.987 cal.°K-1.mol-1), 

and d, e, f, g, h, and i parameters to be estimated (see  Models’ parameterization section 

bellow). 

 

2) Sporleder’s polynomial model 

 Sporleder et al. (2004) used a second order polynomial function of the form: 

M(T) = m1T2 + m2T + i,        (2) 

to describe the relation between mortality rate M(T) and temperature for the different life 

stages of the P. operculella. m1, m2 and i are parameters to be estimated (see  Models’ 

parameterization section bellow). While second degree polynomials are appropriate to 

describe a parabolic relationship they usually provide a poor extrapolation beyond the range 

of observations. Nevertheless, we decided to test this rather simple model on survival data of 

the three species of PTM since it had already been used to simulate mortality of one of the 

species of PTM (Sporleder et al. 2004). To model our survival data we expressed survival rate 

as the inverse of mortality rate: P(survival) = 1 - M(T). 

 

3) Régnière’s model 

 Régnière et al. (submitted) assume that the probability of survival at a given 

temperature is constant from day to day, and that overall survival is simply a matter of 

exposure duration to that daily survival probability. Under these conditions, the probability of 

survival over the duration of a given life stage at temperature T is: 

( )( ) t TP survival s=                               (3) 
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Where t is development time at temperature T (see Appendix S3 for a description of the 

functions relating development time to temperature for each species and stage), and s the 

survival rate at a given temperature T, which is assumed to be a function of T, s(T). Through 

the transformation: 

( ) ( )[ ]sssLogit −= 1ln                    (4) 

the existence of a relationship between daily survival rate and temperature can be tested with 

a simple polynomial (parabolic) model of the form: 

( ) 2cTbTasLogit ++=                           (5) 

 

Returning to the normal scale gives: 

( )2

2( )
1

t T
a bT cT

a bT cT

eP survival
e

+ +

+ +

⎛ ⎞
= ⎜ ⎟⎜ ⎟+⎝ ⎠

      (6) 

with a, b and c parameters to be estimated.  

Models’ parameterization  

Parameters of the three models were estimated using log-likelihood assuming that the number 

of survivors out of the initial number in each treatment is binomially-distributed, with 

probability P(survival). In the case of S. tangolias, for which we did not dispose of data on 

initial number of moths and hence on number of survivors for part of the survival data, we 

adjusted parameters using least sum of squares. 

Model performance evaluation  

 We used the Bayesian Information Criterion (BIC) (Schwarz 1978),  to compare the 

performance of the three models:  

 

BIC = (–2 * LL) + (k * Ln(n))                      (7) 
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where LL is log-likelihood of the model, k is the number of parameters in the model, and n is 

sample size (i.e. number of data points). The model that had the smallest value of BIC was 

considered the best. In the case of the models fitted to S. tangolias data, that were fitted using 

least squares, we calculated BIC with the following equation: 

BIC = n * ln(RSS/n)+ ln(n) *k 

where RSS is the residual sum of squares of the model. 

 Additionally, we assessed the models’ robustness in two ways.  First we evaluated 

their ability to generate the parabolic shape characteristic of temperature related survival with 

high mortality at extreme temperatures (Angilletta 2009), in spite of data points used for the 

model fit being only from the middle of the temperature range. Second, we evaluated the 

ability of models to predict the actual altitudinal limits of the species. For this, we first 

calculated with the three models the probability of survival of each immature life stage of 

each species in the Ecuadorian Andes (altitudes over 2000 m.a.s.l., where potato culture 

begins in Ecuador) using WorldClim mean yearly temperature (with a resolution of 1 km2), 

using the “Map Algebra” tool from ArcMap. To obtain the survival of each species, we 

multiplied the survival rates of eggs, larvae, and pupae for each of them.  

 Then we computed the survival probability predicted by the three models at the 

altitude of 50 field sites were moth abundance has been regularly monitored by our team 

between 2006 and 2008. Subsequently we adjusted linear models to the relationships between 

survival probability and altitude. Finally, predicted survival probabilities along the altitudinal 

gradient were compared to the observed altitudinal limits of the three species (Dangles et al. 

2008). Predicted survival probability was also compared to observed abundance While we are 

aware that species may not be at equilibrium with the environment and have probably not yet 

filled their potential range, the current altitudinal limits of the species is probably close to the 

equilibrium with climate and might be explained by survival probability due to major 

thermal-related physiological constraints (Dangles et al. 2008).  
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Results 

Model fit 

 The three models used to describe the temperature related survival data of the 

immature stages of P. operculella, S. tangolias, and T. solanivora present similar 

performances (i.e. there is little variation between the values of  BIC among the three models 

for each stage of each species) (Table 2). The BIC shows that Sporleder’s parabolic model is 

most often the one that best explains the data relative to its number of parameters (Table 2). 

Régnière’s model has the lowest BIC for P. operculella eggs and pupae, and S. tangolias 

eggs’ survival. Sharpe and DeMichel’s model has the lowest BIC only for T. solanivora 

pupae (Table 2). 

 In most cases, the three models are able to simulate the decay in survival rate at low 

and high temperatures and optimal survival at mid-temperatures (Fig. 1), but they often differ 

in their predictions of the optimal temperature and the high and low lethal temperatures. 

Sporleder’s polynomial model is unable to produce parabolas when adjusted to data of P. 

operculella eggs and T. solanivora pupae (Fig 1a and 1i) where it predicts high survival all 

along the temperature range. In contrast, both Régnière’s and Sharpe and DeMichele’s models 

produce bell shaped curves for those stages of those species. Survival probability at low 

temperatures predicted by both Sporleder’s and Sharpe and DeMichel’s models are higher in 

some cases than that predicted by Régnière’s model (i.e. Fig 1c, e and i) and Sporleder’s 

model predicts close to 100 % survival of T. solanivora pupae at 0 °C (Fig. 1i). Regnière’s 

model always succeeds in predicting 0% survival at low and high temperatures contrary to 

Sporleder and Sharpe and DeMichel’s models. 

  

Prediction of moth distribution 

Simulations with the models using the mean annual temperature (with temperature comprised 

between -5.6 °C and 23.6 °C) allowed us to predict survival probability of the three species 

over the Ecuadorian Andes. Differences in survival lie mostly at high and low altitudes, with 

fewer differences at mid-altitudes (Fig. 2). As a general pattern, PTM present a higher 
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survival at valleys located in the center of the Andes and on both sides of the mountain chain 

where temperatures are higher.  

 P. operculella’s survival probability is best described by a linear model of altitude, (S 

=  ax + b, with S representing survival probability and x altitude in m.a.s.l., and R2 = 0.57, 

0.56, and 0.42 for predictions by Sharpe and DeMichele’s, Sporleder’s, and Régnière’s 

models, respectively). S. tangolias’ survival probability is best described by a cubic model of 

altitude (S = ax3 + b,  R2 of 0.57, 0.61, and 0.57 for Sharpe and DeMichele’s, Sporleder’s, and 

Régnière’s models, respectively). T. solanivora’s survival probability is best described by a 

second order polynom of altitude (S =  ax2 + bx + c,  R2 = 0.56, 0.56, and 0.58 for Sharpe and 

DeMichele’s, Sporleder’s, and Régnière’s models, respectively). Using these relationships, 

we assessed the models’ ability to predict actual moth high altitudinal limits (Fig. 3). As a 

general pattern models predict moth survival at higher altitudes than the maximum altitude 

were moth have ever been observed so far (i.e. 3350, 3800 and 3500 m.a.s.l. for P. 

operculella, S. tangolias, and  T. solanivora, respectively). Sharpe and DeMichele’s model 

greatly overestimates this limit for P. operculella and  T. solanivora (predicting survival at 

altitudes higher than 4000 m.a.s.l.), while the altitudinal limit predicted by Régnière’s model 

is closer to the observed (Fig. 3a and c). While models predict very similar altitudinal limits 

for S. tangolias, they differ more sharply for T. solanivora. It is important to note that these 

altitudinal limits are valid for the Ecuadorian Andes and that moth altitudinal distribution in 

other places (i.e. Peru or Bolivia) may differ due to different climatic conditions in such 

places or to local adaptations of insects. No correlation was found between moth predicted 

survival and observed abundance (Appendix S4). Neither a logarithmic nor a polynomial 

model fit significantly to the data (R2 values ranged between 0.21 and 0.39).  

Discussion 

Comparing various models of insect survival 

 Accurately predicting the level of success of an invasive insect species in a particular 

territory necessitates a good description of its climatic niche (Baker et al. 2000, Jarvis and 

Baker 2001, Sinclair et al. 2003, Logan et al. 2007). Most studies on temperature-related 

performance have focused on development rate to develop predictive phenological models for 

insects (Logan 1988, Bentz et al. 1991, Doerr et al. 2002, Gilbert et al. 2004, Ma and 
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Bechinski 2008). Fewer studies have modeled the influence of temperature on survival 

(Perez-Mendoza et al. 2004, Bonato et al. 2007), even though it constitutes a direct 

measurement of organisms’ tolerance and is an essential component of fitness (Gilchrist 1995, 

Angilletta 2009). Particularly, in places where temperatures approach the lethal extremes,  a 

precise assessment of the physiological limits of the species is important for predicting 

accurately the risk posed by invasive pests (Régnière et al. submitted). In the specific case of 

the Ecuadorian Andes, mean temperatures at high altitudes may be frequently close to the 

lower threshold temperatures for survival, and species’ distribution is restricted to altitudes 

with suitable temperatures (Dangles et al. 2008).  

 In this study we compared the ability of three different models to predict temperature-

related PTM survival. We were particularly interested in assessing the behavior of these 

models when fitted with a small data set that did not cover the whole possible temperature 

range. Small data sets are indeed a common caveat for many agricultural pests in the tropics, 

thereby impeding sound predictions of insect survival at temperature extremes (Keller 2003, 

Niño 2004, Sporleder et al. 2004, Jaramillo et al. 2009). Our study revealed that 

overestimation of survival probability at low temperatures, by Sporleder’s and Sharpe and 

DeMichele’s model, and in a lesser extent by Regniere’s model caused overestimation of the 

maximum altitude that allows survival. This could mean that the actual upper range 

distribution of these species may not be limited by low temperatures but by other factors such 

as biotic interactions (competition and predation) or by the absence of potato cultures at 

higher altitudes. This suggests future lines of research for these species in order to better 

assess the actual factors limiting their altitudinal distribution. 

Potential applications 

 Accurate measures of tolerance are crucial as well for predicting the consequences of 

global changes on pests’ fitness and distributions (Deutsch et al. 2008, Jaramillo et al. 2009). 

Based on simulations of warming tolerance of the Coffee Berry Borer, Hypothenemus 

hampei, Jaramillo et al. (2009) predicted devastating effects of global warming on future 

coffee production. Survival models are useful for evaluating the risk posed by pest species to 

farmers’ crop and agricultural products (Tang et al. 2008, Wang et al. 2009). Agricultural 

landscapes in tropical countries are highly threatened by an increasing number of pest species, 

but studies are scarce and data are difficult to obtain. We hence believe that the value of the 
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Regnière’s model lies in its ability to simulate more accurately PTM survival at low and high 

temperatures when fitted to very few data. 

 In agreement with Dangles et al.’s (2008) study, our results confirm that the potato 

tuber moth S. tangolias is relatively resistant to cold temperatures and that its current 

altitudinal limit at 3800 m.a.s.l. may be related to the distribution of potatoes rather than a 

physiological impediment of cold temperatures. Indeed model extrapolation from figure 3 

predicts that this species may be found up to around 4000 m.a.s.l., while its actual distribution 

is limited to 3800 m.a.s.l. Thus, we infer that the upward expansion of the agricultural frontier 

in the Ecuadorian Andes (Gondard and Mazurek 2001) may be accompanied by an expansion 

of S. tangolias’ distribution to higher altitudes. 
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Tables 

Table 1. Sources of survival (S) data, temperatures at which the experiments were realized, 

and immature stage for which data was available for the three species of potato tuber moth.  

Species Data source Temp
. 

Stage 

    
P. operculella    
 Sporleder et al. (2004) 10.6 Eggs, Larvae 
  10.7 Pupae 
  16.0 Pupae 
  16.1 Eggs, Larvae 
  20.3 Eggs, Larvae, Pupae 
  23.0 Eggs, Larvae, Pupae 
  24.0 Eggs, Larvae 
  25.0 Larvae, Pupae 
  26.1 Eggs 
  26.2 Pupae 
  26.3 Larvae 
  26.5 Pupae 
  26.7 Eggs 
  28.0 Larvae 
  30.0 Larvae 
  30.2 Pupae 
  31.0 Eggs 
S. tangolias    
 Dangles et al. (2008) 10.0 Eggs, Larvae, Pupae 
  15.0 Eggs, Larvae, Pupae 
  20.0 Eggs, Larvae, Pupae 
 Palacios et al. (1998) 12.6 Eggs, Larvae, Pupae 
  13.0 Eggs, Larvae, Pupae 
  17.4 Eggs, Larvae, Pupae 
    
T. solanivora    
 Dangles et al. (2008) 10.0 Eggs, Larvae 
  15.0 Eggs, Larvae, Pupae 
  20.0 Eggs, Larvae, Pupae 
 Torres et al. (1997) 20.0 Eggs, Larvae, Pupae 
  25.0 Eggs, Larvae, Pupae 
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Figure captions 

Fig. 1. Survival probability in relation to temperature of eggs, larvae and pupae of P. 

operculella (a, b, c), S. tangolias (d, e, f), and T. solanivora (g, h, i). Bullets represent 

observed survival and lines predicted survival by the three models.  

Fig. 2. Predicted survival of P. operculella (a, b, c), S. tangolias (d, e, f) and T. solanivora (g, 

h, i) by the three models in the Ecuadorian Andes. 

Fig. 3. Predicted survival rates (bullets) of P. operculella, S. tangolias, and T. solanivora by 

the three models in 50 sites located along an altitudinal gradient in the Ecuadorian Andes. 

Predicted survival of P. operculella, S. tangolias, and T. solanivora were adjusted to linear, 

cubic, and second order polynomial models respectively. Adjusted models are represented by 

lines. The gray area symbolizes altitudes above the agricultural frontier, where no crop is 

cultivated (Gondard and Mazurek 2001), and arrows represent maximum altitudes were moth 

have been recorded during field monitoring in Ecuador. 
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Fig. 2.  
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Fig. 3.  
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APPENDICES CHAPTER 3 

APPENDIX S3 – Modeling potato tuber moth temperature-related development time 

Data on development of immature stages (eggs, larva, and pupa) of the three species of PTM 

were acquired from published data of laboratory experiments performed in the Andean region 

(Table 1). From these sources, only data acquired under constant temperatures (± 2°C) were 

considered. In all studies, relative humidity ranged from 60 to 90%.  

Table 1. Sources of development (D) data and temperatures at which the experiments were realized 
for the three immature stages of the three species of potato tuber moth.  

 Data source Temp. Egg 
    
P. operculella Dangles et al. (2008) 10.0 Eggs, larvae 
  15.0 Eggs, larvae, pupae 
  20.0 Eggs, larvae, pupae 
 Gamboa and Notz (1990) 15.0 Eggs 
  20.0 Eggs 
  25.0 Eggs 
  30.0 Eggs 
 Sporleder et al. (2004) 10.6 Eggs, larvae 
  10.7 Pupae 
  15.0 Eggs 
  16.0 Pupae 
  16.1 Eggs, larvae 
  20.3 Eggs, larvae, pupae 
  23.0 Eggs, larvae, pupae 
  24.0 Eggs, larvae 
  25.0 Larvae, pupae 
  26.1 Eggs 
  26.2 Pupae 
  26.3 Larvae 
  26.5 Pupae 
  26.7 Eggs 
  28.0 Larvae 
  30.0 Larvae 
  30.2 Pupae 
  31.0 Eggs 
    
S. tangolias Dangles et al. (2008) 10.0 Eggs, larvae, pupae 
  15.0 Eggs, larvae, pupae 
  20.0 Eggs, larvae, pupae 
 Palacios et al. (1998) 12.6 Eggs, larvae, pupae 
  13.0 Eggs, larvae, pupae 
  17.4 Eggs, larvae, pupae 
    
T. solanivora Dangles et al. (2008) 10.0 Eggs, larvae 
  15.0 Eggs, larvae, pupae 
  20.0 Eggs, larvae, pupae 
 Notz (1995) 10.0 Eggs, larvae, pupae 
  15.0 Eggs, larvae, pupae 
  20.0 Eggs, larvae, pupae 
  25.0 Eggs, larvae, pupae 
  30.0 Eggs 
 Torres et al. (1997) 15.0 Eggs, larvae, pupae 
  20.0 Eggs, larvae, pupae 
  25.0 Eggs, larvae, pupae 
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Analysis 

We analyzed developmental time directly, rather than rate for three reasons: 1) time is what 

we actually measure in the experiments; 2) an error in developmental time does  not coincide 

with the same error in its inverse, developmental rate at all temperatures (Bentz et al. 1991); 

3) when development at low temperatures is important or when development occurs over a 

long time span (which may be the case for high altitude sites in the Andes), fitting 

developmental functions to time data should produce a more accurate representation of 

phenology (Bentz et al. 1991). Developmental time and rate are related by: 

),(
1),(

ATr
AT =τ                                           (1) 

where τ(T,A) is the simulated mean time for stage completion at temperature T, and A is the 

vector of parameters of the development rate function r(T,A).  

We modeled development of each immature phase with the Sharpe and DeMichele (1977) 

function (as modified by Schoolfield et al. 1981). 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −+⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

⎟
⎠
⎞

⎜
⎝
⎛ −

=

TiR
h

TgR
f

T
dT

D
11exp11exp1

1
16.298

1exp
16.298                 (2) 

where T is temperature in °Kelvin (°C+273.15), R=1.987, and d, e, f, g, h, and i parameters to 

be estimated. This model has already been employed successfully to model P. operculella’s 

development rate (Sporleder et al. 2004).  

We estimated parameter values using maximum likelihood with Microsoft Excel’s Solver ®. 

We therefore assumed that the mean development time is near-normally distributed (central 

limit theorem). Thus, the probability of observing mean time t j (with standard error sj) in 

treatment j at temperature Tj, given the predicted time τj is: 

( ) ( )[ ]2
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and the likelihood to maximize is: 

( )[ ]∑= jjtpLL τln                                (4) 

 In the case of S. tangolias for which we did not dispose of values of standard error for 

half of the data, we were forced to adjust the parameters through the method of least sum of 

squares. However, to avoid unrealistic over-fitting due to the limited amount of data points, 

we adjusted only parameter ρ25 and kept the others fixed to the values obtained for the other 

species and stages. 

Modelled developmental times 

Potato tuber moth development data of the three stages of the three species were described 

adequately by the Sharpe and DeMichele equation (Fig. 1). The relationship between 

observed and predicted developmental time data is shown in figure 2 and estimated parameter 

values and log-likelihood values are shown in table 2.  
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Fig. 1. Observed (bullets) and predicted (lines) developmental times of eggs, larvae and pupae 

of a) P. operculella, b) S. tangolias, and c) T. solanivora.  
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Fig. 2. Observed versus predicted developmental time values for the three immature stages of 

a) P. operculella, b) S. tangolias, and c) T. solanivora. 



152 

 

 



153 

 

References 

Bentz, B. J., J. A. Logan, and G. D. Amman. 1991. Temperature-dependent development of 

the mountain pine-beetle (Coleoptera, Scolytidae) and simulation of its phenology. 

Canadian Entomologist 123:1083-1094. 

Dangles, O., C. Carpio, A. R. Barragan, J. L. Zeddam, and J. F. Silvain. 2008. Temperature as 

a key driver of ecological sorting among invasive pest species in the tropical Andes. 

Ecol Appl 18:1795-1809. 

Gamboa, M., and A. Notz. 1990. Biología de Phthorimaea operculella (Zeller) (Lepidoptera: 

Gelechiidae) en papa (Solanum tuberosum). Revsita de la Facultad de Agronomia 

(Maracay) 16:245-257. 

Notz, A. 1995. Influencia de la temperatura sobre la biologia de Tecia solanivora (Povolny) 

(Lepidoptera:  Gelechiidae) criadas en tuberculos de papa Solanum tuberosum L. 

Boletín de Entomología Venezolana 11:49-54. 

Palacios, M., J. Tenorio, M. Vera, F. Zevallos, and A. Lagnaoui. 1998. Population dynamics 

of the Andean potato tuber moth, Symmetrischema tangolias (Gyen), in three different 

agro-ecosystems in Peru. CIP - Program Report:153-160. 

Schoolfield, R. M., P. J. H. Sharpe, and C. E. Magnuson. 1981. Non-Linear Regression of 

Biological Temperature-Dependent Rate Models Based on Absolute Reaction-Rate 

Theory. Journal of Theoretical Biology 88:719-731. 

Sharpe, P. J. H., and D. W. DeMichele. 1977. Reaction-kinetics of poikilotherm development. 

Journal of Theoretical Biology 64:649-670. 

Sporleder, M., J. Kroschel, M. R. G. Quispe, and A. Lagnaoui. 2004. A temperature-based 

simulation model for the potato tuberworm, Phthorimaea operculella Zeller 

(Lepidoptera; gelechiidae). Environmental Entomology 33:477-486. 

Torres, W., A. Notz, and L. Valencia. 1997. Cliclo de vida y otros aspectos de la biologia de 

la polilla de la papa Tecia solanivora (Povolny) (Lepidoptera: Gelechiidae) en el 

estado Tachira, Venezuela. Boletín de Entomología Venezolana 12:81-94. 

 

 



154 

 

APPENDIX S4 – Relationships between survival and abundance and influence of 

altitude on abundance and on survival.  

 

Fig. 1. Predicted survival by the three models in relation to observed abundance at 50 sites in 

the Ecuadorian Andes of a) P. operculella, b) S. tangolias, and c) T. solanivora. 
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Fig. 2. Relationship between observed abundance at 50 sites in the Ecuadorian Andes and 

altitude (a, c, e) and between predicted survival by the three models and altitude (b, d, f). 
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Abstract 

Insect dynamics are highly affected by the temperature of their environment. Variability in 

temperatures, both diurnal and seasonal or along altitudinal and latitudinal gradients imposes 

additional pressures for insect life. Accounting for the effect of temperature and its fluctuation 

on pest population dynamics is important for the construction of realistic simulation models 

of their dynamics. Such models may be employed in the construction of Pest Risk Maps that 

describe the probability of pests invading or establishing across a region or landscape. In this 

study we develop an individual based model that works with simulated climatic conditions 

under the software BioSim, to predict temperature-related popupation dynamics of three 

species of Potato Tuber Moth in the North Andean Region. We also assess the impact of 

future climatic change scenarios on the distribution of the three species. Our results highlight 

the influence of climatic variability on pest physiology and performance. Our future 

projections support the theory that range shifts towards higher altitudes will probably be more 

important in the tropics than latitudinal shifts. We comment on the challenges associated with 

pest risk mapping in highly heterogeneous landscapes like the Tropical Andes and suggest 

lines of further research and work to improve the reliability of our prediction.  

Key words: 

Climate change, climatic variability, heterogeneous landscapes, individual based model, Pest 

risk mapping, Phthorimaea operculella, Potato tuber moth, Symmetrischema tangolias, Tecia 

solanivora 
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Introduction 

Temperature is a key environmental factor determining ectotherm fitness (Angilletta 2009). 

Insect development, survival, reproduction and locomotion are highly affected by the 

temperature of their environment (Gould et al. 2005, Dangles et al. 2008, Opit et al. 2010), 

causing insect distribution to be strongly tied to differences in temperature across regions 

(Messenger 1959, Régnière et al. 2009). In nature, organisms are subject to seasonal and 

diurnal fluctuations in temperature. These variations impose pressures to insect physiology 

and performance and may modify their dynamics at small and large scales of time (Worner 

1992, Gilchrist 1995, Angilletta 2009).  

 The importance of temperature fluctuation on ectotherm life has been interesting 

biologists for a long time. Seasonal fluctuation is partly responsible for seasonal rhythms in 

populations and causes adaptations such as dormancy and diapause, especially in the most 

seasonally variable environments (Denlinger 1986). Daily fluctuations have a “within 

generation” effect meaning that they affect organisms of the same generation. Most studies 

about the influence of daily variability on insects’ dynamics have focused on temperature-

dependent developmental rate (Kaufmann 1932, cited in Worner 1992). There is little 

consensus on the actual effects of such variability with some studies finding that development 

is retarded (Elligsen 1969, cited in Behrens et al. 1983), others that it is accelerated (Hagstrum 

and Hagstrum 1970, Hagstrum and Leach 1973, Behrens et al. 1983, Davis et al. 2006), and 

yet others that variability has no apparent effect on development (Morris and Fulton 1970, 

Humpesch 1982). The effects of temperature variability on dynamics are a consequence of the 

non-linearity of the temperature-rate relationship of insect performance (Gilbert et al. 2004). 

In the case of development this phenomenon is known as the rate summation or Kauffman 

effect (Worner 1992, Bryant et al. 1999) and predicts acceleration of development at low 

fluctuating temperatures and retardation where temperatures  approach into the high 

temperature threshold when compared to development at constant temperatures (Worner 

1992). 

 All landscapes do not present the same levels of diurnal and seasonal variation. 

Gradients such as those of altitude and of latitude cause differences in the ranges of 

temperatures. Levels of seasonal variation are strongly tied to latitudinal gradients. For 

instance, annual temperature ranges are higher in temperate zones than in the unseasonal 
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tropical ones (Piper and Stewart 1996, Clarke and Gaston 2006, Angilletta 2009). Patterns in 

daily temperature ranges are less clear, seem to have received less attention in the literature, 

and can be confounded in some places by local peculiarities or daily fluctuations in solar 

radiation (Linacre 1982). Temperature measurements performed by our team in the Tropical 

Andes have revealed that the degree of daily variation is influenced by altitude (Dangles and 

Carpio, unpubl. data). Low altitude sites have more constant diel temperatures, while at high 

altitudes temperature during the day may substantially increase (even to more than 30 °C) due 

to high solar radiation and usually drops close or below 0 °C at night. Based on this evidence, 

we argue that the theoretical framework of seasonal (among generations) and daily (within 

generations) thermal variations, initially proposed by Gilchrist (1995, fig. 3) would be a 

useful one to study temperature variability along altitudinal and latitudinal ranges in the 

Tropical Andes. Our proposed framework (Fig. 1) predicts increased seasonality from lower 

to higher latitudes (from 0 to 20°S), and increased diel variations from lower to higher 

altitudes (from 0 to over 6000 m.a.s.l.).  

 The abovementioned variations will certainly cause differences in population 

dynamics of species living along latitudinal and latitudinal gradients. Deeper knowledge 

about these differences allows more accurate predictions of species performance and 

distribution along varying environments. The ability to predict species phenology and 

distribution allows the construction of pest risk maps, which constitute essential tools widely 

used in pest management to improve the efficiency and timing of pest control programs 

(Jarvis and Baker 2001a, b, Satake et al. 2006, Logan et al. 2007, Régnière et al. 2009, 

Venette et al. 2010). These types of maps may be also used in conjunction with predictions of 

future climate in order to forecast future risks associated with the pests. Human induced 

climate changes are projected to be intensified in the future (IPCC 2007). Risk related to 

invasive pests will most likely also change, both in intensity and distribution. Predicting these 

changes will therefore improve the adaptation of farmers to climatic changes and ameliorate 

their capacity to prevent and control future attacks by pest species.    

 In highly heterogeneous regions, such as the Tropical Andes, realism and reliability of 

phenology and distribution models and of pest risk maps strongly depend on their ability to 

reproduce the influence of such variability on the dynamics of the target species. In this 

contribution we describe the development of a physiologically based climate suitability model 

for evaluating present and future risk of invasion of the Potato Tuber Moth (PTM, 
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Lepidoptera, Gelechiidae) in the Tropical Andes. Three species of PTM, Phthorimaea 

operculella (Zeller), Symmetrischema tangolias (Gyen) and Tecia solanivora (Povolny), have 

been invading agricultural landscapes of the region within the last 30 years and cause 

considerable losses in yield in the potato fields of the North Andes, especially in the poorest 

regions (Dangles et al. 2008). Accurately predicting current and future range related to these 

species is imperative for improving the livelihoods and food security of hundreds of 

thousands of farmers of the region.  

Materials and Methods 

Study region 

The following study was realized in the Tropical Andes, located in North West South 

America between the latitudes of approximately 10°N and 20°S and in the countries of 

Colombia, Ecuador, Peru and Bolivia (Plate 1). We concentrated in areas exceeding 1000 

m.a.s.l. because potato is only cultivated above such altitudes. The total area considered 

comprised 2 033 000 km2. One of the most prominent features of the study region is its 

marked spatial heterogeneity, mainly related to changes in elevation (Young and Lipton 2006, 

Young 2009).  The region also lacks a marked seasonality in temperature, especially close to 

0° of latitude. As latitude increases, however, temperature seasonality becomes more apparent 

(Dangles et al. unpubl. data). The Tropical Andes do present temporal variability in 

environmental conditions mainly related to variations in precipitation. Nevertheless, 

precipitation patterns in the Tropical Andes are complex and difficult to predict since they are 

influenced by several factors such as El Niño Southern Oscillation (ENSO) (Young 2009, 

Poveda et al. 2011, Williams et al. 2011), the passage of the inter-tropical convergence zone 

(ITCZ, the area near the equator where winds originating in the northern and southern 

hemispheres come together), and the influence of moisture-laden winds coming from the 

Amazon (Poveda et al. 2011). 

Data bases 

The approach developed in this contribution required detailed data on topographic variation of 

the region, which was obtained with Digital Elevation Models (DEM’s) and on historical and 

future weather variation. DEM information was used to interpolate weather station data to the 

whole region.  
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Digital elevation models 

We used digital elevation models (DEM’s) of the North Andean Region (Colombia, Ecuador, 

Peru and Bolivia) from CGIAR-CSI GeoPortal which provides SRTM 90 m Digital Elevation 

Data for the entire world (Jarvis et al. 2008).  

Weather/Climate 

Historical weather data were obtained from several sources: 1) Global Summary Of the Day 

(GSOD) database for the period 1961-2009 found at the National Climate Data Center’s 

(NCDC) site (ftp.ncdc.noaa.gov/pub/data/gsod/); 2) Global Historical Climatology Network 

(GHCN) data from the National Oceanic and Atmospheric Administration (NOAA); 3) 

monthly reports of the period 2000-2006 from the National Meteorology and Hydrology 

Institute of Ecuador (INAMHI, www.inamhi.gov.ec/anuarios/). GSOD and GHCN data 

consisted of daily minimum and maximum temperatures and those from INAMHI of mean 

monthly minimum and maximum temperatures for each year of the period.  

 Future climate was obtained from the International Centre for Tropical Agriculture’s 

GCM Downscaled Data Portal (http://ccafs-climate.org/download_sres.html). Several GCM 

models are available at this site. We chose the second generation coupled global climate 

model (CGCM2) developed by the Canadian Centre for Climate Modelling and Analysis 

(CCCMA). This is a transient model that considers that if CO2 levels were held constant at 

any point in time, temperature would continue to increase until equilibrium was reached. 

Future projections are available for two IPCC SRES scenarios: A2 and B2. Even though 

downscaling methods may produce unrealistic results in highly heterogeneous landscapes like 

the Andes, where topography may cause considerable variations in anomalies, we are not 

aware at the moment of other climate change data for the region at this resolution. 

Potato tuber moth model 

We constructed an individual based model of PTM dynamics to mimic moth responses to 

temperature in the North Andean Region. This model simulated development, survival and 

fecundity rate models for the three species of PTM based on their stage-specific response 

functions to temperature. We used published temperature-response data of laboratory 

experiments performed in the Andean region (Torres et al. 1997, Palacios et al. 1998, 

Sporleder et al. 2004, Dangles et al. 2008) and unpublished data from laboratory experiments 
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performed by our team at Entomology Laboratory of the Pontifical Catholic University of 

Ecuador to construct temperature-based models of insects’ dynamics (see Chapters 1 and 2 of 

this dissertation).  

 PTM development rate was modeled with the Sharpe and DeMichele (1977) equation 

as modified by Schoolfield et al. (1981): 
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where T is temperature in °Kelvin (°C+273.15), R=1.987, and d, e, f, g, h, and i estimated 

parameters. In the model, individuals cumulate daily development rates until attaining a value 

of 1 (time when they change of stage). Thus, development includes either ageing within the 

same stage or changing to the next one (i.e. from egg to larvae, larvae to pupae or pupae to 

adult). Variability in developmental rates was included by assigning each newly created 

individual a different value of deviation from mean development time for each life stage, 

according to a lognormal distribution. 

Temperature related survival probability for each stage of each species was calculated 

with equation 2: 
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where a, b, and c are estimated parameters. Individual survival during each time step was 

simulated by drawing a uniformly-distributed random number and removing the individual if 

this number was larger than the survival probability during that time step. See chapter 3 of 

this dissertation for a detailed description of the development and survival models.  

Number of eggs laid by each female accumulating from the onset of the oviposition 

period to time t was modeled with equation 3: 

( )( )( )0,
0 1 ttBT

t eFO −−−= κ          (3) 
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where F0 represents temperature related fecundity: 

x
oTTkAbsjF −+=0                     (4) 

where j, k, To and x are estimated parameters. κ from equation 3 represents the proportion of 

eggs out of their remaining fecundity laid by each female at each unit of time, assuming that 

cumulative oviposition follows a diminishing return pattern. The relationship between κ and 

temperature was modeled with Sharpe and DeMichele’s model modified by Schoolfield et al. 

(1981). Since sex ratio of PTM species is close to one (Herrera 1998, Makee and Saour 2001) 

half of the pupae that transformed into adults were considered as oviposing females. Adult 

longevity in relation to temperature was also modeled with the modified Sharpe and 

DeMichele (1977) model. See chapter 2 of this dissertation for a detailed description of the 

oviposition rate model.  

We used eqation 5 to calculate population growth rate at each time step: 

1)(
1 ++=
+ tEEE OTSNN

ttt
                   (5) 

with NE the number of eggs at time t and SE survival probability as a function of temperature 

(T) at time t, and O number eggs laid by females at time t+1. Model time step was four hours 

with temperatures interpolated by half sine curves between successive daily minimum and 

maximum values. 

Assessing the influence of temperature variation on population dynamics 

In order to understand the importance of the degree of seasonal and daily temperature 

fluctuations on PTM dynamics we ran the model for one year at nine sites located across an 

altitudinal and latitudinal gradient. We chose sites where temperature variations resembled 

those of Figure 1. We used the BioSIM system to generate daily weather data for each site 

and simulate our insects’ dynamics (see Weather Interpolation section below). 

PTM risk mapping 

We implemented the PTM models into the BioSIM system (Régnière 1996) in order to obtain 

maps of target events such as PTM population survival, mean number of generations and 

population growth rate in the North Andean Region. The BioSIM system runs the PTM 

models for each location sampled from a DEM with a resolution of 30 s (i.e. about 1 km in 
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the Equator). We ran the model at 5000 locations and then interpolated these sampled points 

to result in a continuous map of target events. Potato cultures have been found to begin at 

1000 m.a.s.l. in the Andean region (Hijmans 2001). We used this information to exclude 

zones below this altitude and thus generate a DEM of potato culture zones of the North 

Andean Region. The BioSIM modeling process is explained in more detail below.  

Weather interpolation 

The first step in the BioSIM system consists in interpolating 30 year normals from the nearest 

weather stations (GSOD, GHCN or INAMHI stations) to each sampled location. The 

interpolation method consists in an inverse distance square weighting technique to correct for 

differences in elevation, latitude and longitude between the weather stations and the sampled 

point (Logan et al. 2007, Régnière et al. 2008). In the case of future climate we calculated the 

difference between CIAT’s future temperature data and current temperature from the 

WorldClim data set (Hijmans et al. 2005). This difference was then applied to the weather 

station data.  

 Given the influence of daily variability on insect performance (Worner 1992, Liu et al. 

2002, Meats and Kelly 2008) BioSIM interpolates linearly between monthly mean 

temperatures to produce daily maximum/minimum temperature values for simulations 

(Régnière and Bolstad 1994, Régnière and St-Amant 2007, Régnière et al. 2008). Time step in 

our model was set to four hours and temperatures were interpolated by half sine curves 

between successive daily minimum and maximum values to simulate variation along the day. 

Model runs and output interpolation  

We ran the models for 10 consecutive years at each of the 5000 locations with the generated 

weather data. We ran the model with historical weather data (1961-2009) and with climate 

data of 2020 and 2050 for the two climate change scenarios (A2 and B2=). We ran 5 

replications for each location and obtained values of mean number of generations per year, 

mean population growth rate and mean survival for each replication at each location. These 

results were interpolated to the whole region through universal kriging with elevation as 

external drift (Logan et al. 2007, Régnière et al. 2008). This allowed us to obtain GIS layers 

of PTM performance in the North Andean Region.     
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Model evaluation  

We used observed PTM abundance data from a field survey performed by our team at several 

sites in Ecuador, Peru and Bolivia to evaluate the ability of our model to predict moth 

presence accurately (see http://www.innomip.ird.fr for further details on moth monitoring in 

the region). We evaluated our model’s output in several ways:  

1) We used the ROC (Receiver Operating Characteristic) curve to assess the ability of our 

model to predict moth presence better than random and calculated the Area Under the ROC 

curve (AUC) as a measure of model performance (for information regarding the ROC curve 

see Fielding and Bell 1997). Since we only disposed of presence data we followed the 

approach presented in Phillips et al. (2006) to build the ROC curve with presence only data, 

which proposes distinguishing presence from random, rather than presence from absence. For 

this we randomly chose 5000 background points for the study area and assigned them a value 

of 0. Pixels that fell in the observed moth presence points (32 points for P. operculella and S. 

tangolias and 20 for T. solanivora) were assigned a value of 1. Then we used survival 

probability predicted by our model at each of these points (background and presence points) 

to construct the ROC curves. We constructed the curves and calculated the AUC with the 

functions “roc.plot” and “roc.area” from the “verification” library of R (R 2010). We are 

aware that ROC curves for species distribution models are normally applied to probability of 

presence data (Phillips et al. 2006, Morin et al. 2007) and that survival probability is only a 

surrogate of these. However, we believe that survival probability may be an adequate 

estimator of our species’ presence.  

2) We calculated the probability that our model predicted the test localities significantly better 

than random with a threshold dependent analysis. Following the procedure described by 

Phillips et al. (2006) we first established a threshold to convert survival probability 

predictions into binary predictions dividing the area into suitable and unsuitable. We chose 

the threshold according to the smallest non-zero predicted survival probability value for each 

species. Phillips et al. (2006) also propose the use of a one-tailed binomial probability test to 

calculate the probability of having a certain number of successes (presences) out of a given 

number of trials (test localities) given some probability of success. Probability of success 

corresponds to the proportion of suitable area for the species with a given threshold. We 

calculated this probability using Minitab (2009).  
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3) We compared observed adult abundance through time with predicted adult abundance after 

five years of simulations. Since we were interested in patterns rather than actual numbers and 

the differences between observed and predicted numbers were too large, we were forced to 

transform the data (log-transformation).  

Results 

Influence of temperature variation on population dynamics  

Levels of diurnal and seasonal temperature variability affected the three species of PTM in 

different ways (Fig. 2). P. operculella’s population growth was enhanced with smaller diurnal 

and seasonal fluctuations, with fastest growth at the warmer low altitude and low latitude site 

(Fig. 2a). In general, increase in latitude (i.e. increase in seasonal variability) was detrimental 

for this species’ growth, with the population becoming extinct after a little more than six 

months at the high altitude and high latitude sites. Both S. tangolias and T. solanivora 

populations were unable to persist at low altitude sites, presumably due to their lower 

tolerance to higher temperatures (Fig. 2b and 2c, respectively). Increase in diurnal fluctuations 

with altitude slowed down these two species’ dynamics. T. solanivora’s population went 

rapidly extinct at sites with high seasonal variation (Fig. 2c). 

Predicted current distribution  

Predictions of PTM dynamics in the Tropical Andes (above 1000 m.a.s.l.) showed that P. 

operculella had in general a higher probability of surviving than the other two species (Fig. 

3a).  T. solanivora showed the lowest overall survival (Fig. 3c) and according to our model 

none of the species were able to survive in the highest parts of Bolivia (the Altiplano) 

although the presence of P. operculella and S. tangolias has been recorded by our team at 

several monitoring sites of this landscape (Fig. 3a and b and see http://www.innomip.ird.fr/). 

The other two target events (number of generations and population growth rate) presented 

similar patterns and are shown in Appendix A3. In general, the three species performed better 

at lower than higher altitudes. A zoom to the Ecuadorian Andes showed that the models were 

able to predict survival of the three species in the sites of observed presence (Fig.4). Results 

for number of generations and population growth rate produced similar patterns than those for 

survival probability in the Ecuadorian Andes (results not shown). 



170 

 

 According to the AUC our predictions for P. operculella were no better than random.  

(AUC = 0.44, P = 0.87). This is probably caused by the fact that the model fails to predict 

presence in the majority of monitoring sites of Peru and Bolivia and predicts high survival at 

lower altitudes where we dispose of no data on the species presence or absence. These two 

phenomena are probably the cause of the low hit rate and the high false alarm rate observed in 

the ROC curve (Fig. 5a). However, according to the one-tailed binomial test, with a threshold 

of 0.01, the probability of our model predicting the localities of observed moth presence was 

significant (P < 0.05). Our model performed better for the other two species (Fig. 4b and c). 

Predictions for S. tangolias were fair with an AUC of 0.61 (P < 0.05) and those for T. 

solanivora were good (AUC = 0.86, P < 0.001). ROC curves for these two species can be 

observed in Fig. 5b and c. One-tailed binomial test, with thresholds of 0.2 for both species, 

also showed that our model predicted these two species’ survival in observed localities 

significantly better than random (P < 0.001). 

 Comparing the observed and predicted number of adults at several monitoring sites in 

the study region showed that in many of the sites where moth presence is constantly observed 

the model predicts a persistent adult population (Fig 6). We did not find clear temporal 

patterns in observed and predicted adult abundance. The model predicted population 

extinction for P. operculella and S. tangolias in the Bolivia site, even though adult moth 

presence is constantly detected there (Fig. 6a and b, respectively). The same occurs in the 

high altitude site of Central Peru for P. operculella. In the case of T. solanivora, whose 

southern distribution limit is Southern Ecuador, the model did not predict population 

persistence in Peru or Bolivia (Fig. 6c).  

Predicted future distribution 

The future temperature scenarios we used for our projections show that in most parts of the 

region temperature will tend to increase (Appendix A4). However, in few parts of the Eastern 

Ecuadorian cordillera and the Colombian Andes temperature is projected to decrease, 

especially in 2020 with scenario B2. Nevertheless, the level of cooling will not approach more 

than 1 °C. By 2050 temperature of most of the region will increase by 1 to 3 °C, with most 

intensive warming in some parts of Peru and Bolivia. According to our PTM phenology 

model these changes in temperature will change the risk related to PTM distribution (see Fig. 

7 for predictions of survival, and Appendix A5 and A6 for number of generations and 
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population growth rate). Our results show that responses will differ among species and 

between climate change scenarios. In general, we found risk to be higher in scenario A2 as 

compared to B2 (although differences in 2020 seem very subtle). Also we found that risk 

tended to increase with time as evidenced by a general increase in survival probability, 

number of generations per year and population growth rate between 2020 and 2050. 

 In particular, we found that P. operculella and S. tangolias’s dynamics will be 

enhanced, especially in Peru and Bolivia where these species survival probability, number of 

generations and population growth rate will increase (Fig. 7a and b). According to our model 

T. solanivora will present less risk for potato cultures than the other two species. Future 

conditions will be favorable for this species mostly in Peru and a few parts of Bolivia (note 

that currently T. solanivora is absent from these two countries). In Ecuador and most parts of 

Colombia conditions will cause risk related to T. solanivora to either remain unchanged or 

decrease in a small degree.  

 Cooling will apparently produce different responses among the three species. In 

Southern Colombia lower temperatures will be detrimental for P. operculella’s populations, 

whereas T. solanivora’s and S. tangolias dynamics will be enhanced by cooling in some 

zones. For instance, see these two species’ patterns of survival (Fig. 7b and c) and number of 

generations (Appendix A5, Fig. 2 and 3) in the North Eastern Colombian Andes (Fig. 7c). 

Influence of altitude and latitude on actual and future distribution 

The three species’ current distributions differ with respect to altitude and latitude (Fig. 8).  

Our results show that currently P. operculella is better adapted to lower altitudes whereas the 

other two seem to perform better at higher altitudes. Increase in latitude seems to be 

detrimental for the three species as well, with their number of generations, their population 

growth and their survival probability being lower at the higher latitudes (Fig. 8a, b and c, 

respectively).  

 Future climate changes will produce different responses in the three species. Our 

model suggests an expansion of P. operculella towards higher altitudes, as evidenced by the 

increase in number of generations, population growth rate and survival probability of this 

species towards higher altitudes in the future (Fig. 8a, b, and c, respectively). Patterns for S. 

tangolias and T. solanivora suggest that these two species will contract their distribution 
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ranges. This will be mainly caused by decreased performance at lower altitudes - see for 

example the decrease in T. solanivora’s population growth rate at low altitudes from current 

conditions to 2050 (Fig. 8b). According to our results T. solanivora’s performance will not be 

greatly enhanced at higher altitudes. On the contrary, future conditions may allow S. tangolias 

to expand its range to higher altitude by increasing its survival probability (Fig. 8c). Also, at 

low latitude zones population growth rate of this species presents a slight increase towards 

higher altitudes in the future (Fig. 8b).   

 Patterns of change with latitude are less evident, especially for S. tangolias and T. 

solanivora. At lower latitudes future conditions seem to improve for P. operculella. For 

instance, notice that low altitude populations able to produce eight generations per year are 

currently projected to be restricted to a narrow range of latitudes (from 0 to 9°).  By 2050 

conditions will allow populations to produce that same number of generations from 10° to -

12° of latitude (Fig. 8a). Survival rate of low altitude populations shows similar trend (Fig. 

8c).  

Discussion 

The approach presented in this study is a first attempt to build present and future pest risk 

maps of Potato Tuber Moth invasion at the level of the Tropical Andean region. The use of a 

phenology model allowed us to simulate moth phenology across the region and to assess their 

probabilities of survival, number of generations and population growth rate under the climatic 

regimes of the highly variable Tropical Andes. In our study we were interested in two types of 

temperature variability that may be experienced by PTM along the altitudinal and latitudinal 

gradients of the Tropical Andes: daily variability whose range is thought to increase with 

altitude, and seasonal variability, whose range increases with increasing latitude (see 

Introduction). Studies on temperature variability normally use experiments to determine the 

different effects of fluctuating versus constant temperatures on insects’ performance (Elliott et 

al. 1988, Joshi 1996, Davis et al. 2006, Meats and Kelly 2008). In our case we simulated PTM 

dynamics in sites with different levels of seasonal and daily variation with a phenology model 

calibrated with data obtained at constant temperatures. Output of this model revealed 

differences in the effects of levels of variation among the three species’ dynamics. These 

results may help understanding the present observed distributions of the species. For instance, 

P. operculella, the most widely spread of the three species across tropical and subtropical 



173 

 

countries (Rondon 2010), seemed to be the most tolerant and the most successful, especially 

in low altitude sites with low daily variation. The other two species, whose distribution is 

restricted to mountainous regions, were not able to survive in the low altitude sites.  

 Modeling species distribution at large scales in highly heterogeneous environments is 

a challenging task for ecologists. In this contribution we managed to simulate T. solanivora’s 

actual distribution successfully, and the model seemed to perform better for the three species 

in the Ecuadorian part of their distribution. In the case of P. operculella and S. tangolias we 

encountered some difficulties when predicting their presence in high parts of Peru and in the 

Bolivian Altiplano. This may be caused by several factors. First, it may be due to the 

difficulty of accounting for the actual heterogeneity of the region and to simulate realistic 

temperature conditions. We simulated temperature by interpolating data from weather stations 

across the region. In the Andes weather stations are not very abundant. This, added to the high 

heterogeneity of the region, may reduce the accuracy of weather interpolation. In fact, 

comparing simulated and observed weather at two sites in Peru and one in Bolivia showed us 

that simulations were different from observations, with a sub estimation of temperature ranges 

by the latter (Appendix A7). As pointed out by Worner (1992), when mean temperatures are 

close to the minimum threshold for development, larger temperature fluctuations may speed 

up development and thus favor populations in places with these characteristics. This could 

possibly explain the observed presence of P. operculella and S. tangolias at our monitoring 

sites in Bolivia where the model predicted them absent. The importance of collecting more 

quality weather data for the Andean Region becomes evident. Also, high heterogeneity allows 

us to suspect that microclimatic conditions could be influencing pest dynamics at some parts 

of the region. Smaller scale models with more detailed environmental conditions could thus 

be more useful and realistic for such cases.   

 Our model’s accuracy may have also been reduced by the human-induced 

heterogeneity or social heterogeneity of the region.  The Tropical Andes have a long history 

of human occupation. Since the arrival of the first humans to the region in the early Holocene 

the landscape has been subject to anthropogenic impacts first related to burning, hunting and 

gathering and later to intensive agricultural activity (Johannessen and Hastorf 1990, Hansen 

and Rodbell 1995, Sarmiento 2002, Young 2009). These alterations may mask or confound 

the effects of natural drivers of pest invasion and establishment. As shown by a cellular 

automata model developed by our team to simulate T. solanivora’s propagation into an 
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isolated valley of the Central Ecuadorian Andes, the presence of potato storage structures 

across the territory allows the establishment of  moth in places from which they would 

normally be absent due to climatic constraints (Crespo-Pérez et al. accepted). In fact, the 

pest’s actual propagation was better explained when the model accounted for the presence of 

storage structures than when it considered the natural landscape alone. Perhaps including the 

presence and effect of these structures in the present model would allow us to make more 

realistic predictions of the moths’ actual distribution, although this would be a most 

challenging task at the level of the whole tropical Andean region. 

 Another challenge related to invasive species distribution modeling is genetic 

bottleneck associated with invasion. This phenomenon reduces genetic diversity of invading 

populations and could cause them to respond differently to environmental characteristic. 

Studies of genetic structure of T. solanivora populations across its native and invaded ranges 

indeed showed a reduction in genetic diversity in invasive populations (Puillandre et al. 

2008). Torres et al. (2011) even found that reduction was more drastic in populations from 

more recently invaded countries (i.e. populations of Colombia, Ecuador and the Canary 

Islands). We are not aware of similar studies for the other two species of PTM, but given that 

the mechanisms of invasion of the three are probably the same (through commercial 

exchanges of potato) we can expect a similar trend in their genetic diversity. Additionally, 

populations living at different parts of the region with particular weather conditions may be 

adapted to such conditions and may thus respond differently than populations from other 

locations (Gilchrist 1995, Angilletta 2009). Lack of sufficient data forced us to calibrate our 

models with data from a small number of populations that did not cover the entire distribution 

range of the species, mainly in the case of P. operculella and S. tangolias. Extrapolating this 

information to the entire Tropical Andean Region may have biased our prediction. For 

instance, P. operculella performance models were adjusted to data of populations from Peru 

(Sporleder et al. 2004) and those of S. tangolias’ to data from  Ecuador and Peru (Palacios et 

al. 1998, Dangles et al. 2008). Thus, our results may suggest that Bolivian populations of 

these two species may respond differently to temperature and may be able to overcome 

temperature conditions of the Bolivian Altiplano. We therefore believe that collecting data 

from a wider geographic range would also aid to enhance the realism of our predictions.  
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Future risks related to PTM  

Running our model with future climate change projections showed us that risks related to 

PTM will change in the future. Information about the effects of climate change on arthropods 

comes mainly from studies at temperate regions, with most reporting positive effects on insect 

fitness and distribution ranges (Parmesan et al. 1999, Bale et al. 2002, Gomi et al. 2007, 

Musolin 2007, Kearney et al. 2009). Studies in the tropics are less abundant and establishing 

generalities about the effects of climate change in these regions is difficult (but see Kearney at 

al. 2009). Some studies report deleterious effects of climate changes on ectotherm diversity 

(Deutsch et al. 2008) and on geographic distribution of some groups (Terblanche et al. 2008). 

Others, on the contrary, predict that climate change may be favorable for some species (Patz 

and Olson 2006, Jaramillo et al. 2009). Our study confirmed that the effects of climate change 

will vary depending on the species of PTM and on geographic location; although a general 

favorable influence was evidenced for P. operculella and S. tangolias.  

 Theory on responses of species distributions to climate change predicts that in the 

tropics upslope shifts of range limits will probably be more important than poleward shifts 

because of the shallow latitudinal temperature gradient between the Tropics of Cancer and 

Capricorn (Colwell et al. 2008, Kreyling et al. 2010). Our results for P. operculella and S. 

tangolias support this theory since higher altitudes will become favorable for the species 

dynamics in the future. Future conditions in the lower limits of S. tangolias current 

distribution will become less favorable in the future causing this species range to contract at 

lower altitudes. In addition, we found a much weaker tendency for a shift towards lower 

latitudes and only for P. operculella. Such predictions constitute important tools that may 

improve adaptation of farmers to changing pest risks associated with future climate warming. 

In the Tropical Andes, where human activity, especially land use changes, may intensify the 

effects of climate warming or cause additional impacts to species distribution, predictions of  

models should incorporate such anthropogenic activities for construction of more realistic 

pest risk maps for the future.  
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Figure captions 

Fig. 1. Predicted daily and seasonal temperature variability along an altitudinal and latitudinal 

gradient in the Tropical Andes.  

Fig. 2. Population dynamics of the three species of PTM simulated for one year under the 

climatic conditions of nine sites along an altitudinal and latitudinal gradient in the North 

Andean Region. Temperature regimes of the nine sites resemble those for the hypothesized 

temperatures in figure 1. Mean annual temperature for each site is shown in the upper left 

corner of each graph. 

Fig. 3. Maps showing current survival probability predicted by our phenology model for the 

three species of PTM in the Northern Andes. Simulations were done only in areas over 1000 

m.a.s.l., altitude over which potato is cultivated in the region. 

Fig. 4. Maps showing predicted survival probability for the three species in a portion of the 

Ecuadorian Andes. 

Fig. 5. Receiver Operating Characteristic curves showing the relationship between hit rate 

(true positive) and false alarm rate (false positive) for current distribution predictions for a) P. 

operculella, b) S. tangolias, and c) T. solanivora in the Northern Andes. Numbers along the 

curves represent the threshold survival over which the species were considered present for 

each measurement of accuracy. 

Fig. 6. Observed and predicted adult numbers (ln transformed and log10 transformed in the 

case of observed and predicted numbers respectively) at several sites in Ecuador, Peru and 

Bolivia where a monitoring program has been established. Numbers of predicted adults 

correspond to numbers for the fifth year of simulation. a) P. operculella, b) S. tangolias, and 

c) T. solanivora.   

Fig. 7. Predicted future survival probability for the four climate change scenarios for a) P. 

operculella, b) S. tangolias, and c) T. solanivora, showing the anomalies with respect to 

current predicted survival.  
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Fig. 8. Contour plots showing the influence of altitude and latitude on present and future a) 

survival probability, b) number of generations per year, and c) population growth rate of the 

three species of PTM. 
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P. operculella 
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S. tangolias 
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T. solanivora 
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APPENDIX S6– Present and future mean annual temperatures predicted by the climate 

model chosen for our study, for two periods in the future, 2020 and 2050 and two SRES 

scenarios B2 and A2. 
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APPENDIX S7 – Future number of generations of the three species of PTM predicted 

by our model for two periods in the future and two SRES scenarios. 

 

 

Fig. 1. Future number of generations of P. operculella 
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Fig. 2. Future number of generations of S. tangolias 
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Fig. 3. Future number of generations of T. solanivora 
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APPENDIX S8 – Future population growth rate of the three species of PTM predicted 

by our model for two periods in the future and two SRES scenarios. 

 

 

Fig. 1. Future population growth rate of P. operculella 
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Fig. 2. Future population growth rate of S. tangolias 
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Fig. 3. Future population growth rate of T. solanivora 
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APPENDIX S9 – Predicted and observed temperatures along one year at two sites in 

Peru and one site in Bolivia.  
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CHALLENGES FOR MODELING PEST DYNAMICS IN THE TROPICAL ANDES 

Ecological modeling is a valuable approach that may greatly contribute to pest management 

in the Tropical Andes. However, modeling in this region presents several difficulties that 

should be overcome for accurate and realistic simulations. One such difficulty is the high 

heterogeneity of the region, both environmental and social (or human-induced) (Young and 

Lipton 2006, Young 2009) that may influence pest invasion, establishment and propagation. 

Detail of both environmental and social variables included in our models was restricted by the 

resolution of GIS layers and data availability. Resolution of climate variables used for our 

cellular automaton and to construct our pest risk maps was 1 km2. Even though resolution of 

the land use layer included in the automaton was higher (0.25 km2) it did not distinguish 

among different types of short cycle crop and forced us to assume that the whole area with 

such crop had potato at the same time. These coarse resolutions and simplifications are clearly 

not realistic for such a heterogeneous region. Our team is currently studying heterogeneity in 

the Ecuadorian Andes and has found that a considerable number of different crops are 

cultivated within plots of 1 km2. Temperature measurements of cultivated fields have revealed 

the existence of microclimates associated with the different crops (Plate 9). Crop rotation is 

also an important characteristic of the agricultural landscapes in the Andes which causes a 

temporal heterogeneity in food availability for pests. Finally, the different life stages of PTM 

inhabit different microhabitats and are probably exposed to different temperatures. Including 

all these additional sources of heterogeneity could have enhanced the realism and accuracy of 

our modeling approaches.   

 Given evidence on the influence of human activity on organisms’ dynamics 

(Bossenbroek et al. 2007, Pitt et al. 2009, Prasad et al. 2010) we considered important to 

include human-induced heterogeneity into our cellular automata model. This actually 

suggested that moth spatio-temporal propagation is better explained when considering the 

influence of potato storage structures that modify local microclimate for moths and the 

passive transport of moth in human vehicles, than when considering natural conditions only. 

Since we did not dispose information on actual distribution of potato storage structures we 

placed such storages in our landscapes with different types of theoretical distributions 

(random, clumped and regular). Obtaining layers of storage distribution and including them 

into our cellular automaton could have allowed us to model moth propagation with more 
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realism. We did not consider any sources of human influence to construct our pest risk maps. 

However, we believe that moth invasion is probably influenced by human practices at the 

regional scale too. Including information on human-induced heterogeneity such as crop or 

storage structure distribution could have also allowed us to better predict moth invasion in the 

region.  

 Another important characteristic of the North Andean region that may hinder 

population modeling is the extreme daily variation in temperature (Denlinger 1986). In this 

study we assessed the influence of such variation by simulating PTM oviposition rate under 

fluctuating and constant temperature regimes. We found that fluctuating temperatures caused 

changes in the form of the temperature-related fecundity curve, with lower number of eggs at 

mid-temperatures and higher number at extreme ones. We are not aware of other studies 

simulating oviposition rate under fluctuating temperatures. There is one study by Gilbert et al. 

(2004) that compared three different models to simulate Mountain Pine Beetle development 

and highlighted the ability of one of those models (the Extended von Foerster model) to 

realistically model development under varying temperatures. The absence of data on PTM 

oviposition dynamics under variable environments did not allow us to validate our model and 

to assess its ability to simulate actual oviposition dynamics. Nevertheless, our results 

highlighted the importance of generating realistic daily weather regimes that capture the 

actual levels of thermal heterogeneity, for more accurate simulations of species dynamics in 

heterogeneous environments. 

 A constant obstacle we faced during this study was the lack of data. This was for 

instance evidenced by the limited data sets available for modeling PTM survival probability 

which did not cover the entire temperature range. Deleterious effects of temperature are 

normally associated with temperature extremes (Angilletta 2009). Such information is of 

particular importance for modeling dynamics in places such as the high Andes where 

temperatures may approach such extremes. We therefore considered important to develop a 

model capable of simulating the deleterious effects of extreme temperatures given the limited 

data sets. Lack of data also made it difficult to validate not only our survival models but also 

our oviposition rate model and our pest risk maps. Dearth of information was also an issue 

when running our PTM population model in the Andean region. For instance, the absence of 

sufficient weather stations, tied to high topographic heterogeneity, made it difficult to 

simulate temperature realistically in some parts of the study region. This may have decreased 
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the predictive power of our model and its ability to accurately simulate moth distribution in 

some parts of the region (i.e. distribution of P. operculella and S. tangolias in Bolivia). Also 

this model’s performance was reduced by the fact that we parameterized our submodels 

(survival, development and oviposition) with data from a small number of populations that 

did not cover the entire distribution range of the species. Genetic bottlenecks (commonly 

associated with invasive populations) and adaptations of populations to local climatic 

conditions may cause responses to climate to vary among populations. Therefore, to more 

accurately predict species distribution across an entire region (especially one as heterogeneous 

as ours) models should be ideally calibrated with data from populations covering a large 

portion of the region.  

THIS PHD AS PART OF A LARGER PROJECT  

The INNOMIP project, of which this PhD project was part, is almost finalized now and has 

produced various important products contributing to more efficient pest management in the 

region.  Several publications have been produced to make the project’s results available to the 

scientific community and technicians involved in IPM. Those in collaboration with the 

present author are detailed bellow: 

1) As an effort to better understand pest dynamics the project conducted a study about the 

effect of co-occurrence of two or more PTM species in potato tubers  (Dangles et al. 

2009, and see Appendix S10). This contribution revealed crop damage levels increase 

with pest diversity and that when the three species are present damage is greater than 

that predicted by the added effects of each species alone. This study unveiled the 

dangers of co-infection of the same crop by several pests, and results could later be 

used in our models to include effects of species interactions. 

2) A simplified form of a cellular automata developed by the author to study PTM pest 

dynamics in an agricultural landscape (see Chapter 1 of this thesis) was integrated 

with an agent-based model to assess the importance of farmers’ mobility and pest 

control knowledge on pest expansion  (Rebaudo et al. 2011, and see Appendix S11). 

Such a coupled model was then used as an educational tool to make farmers aware of 

the dangers related to the pest and on the procedures they should follow to impede its 
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propagation. Also, a description of a simplified version of the cellular automata is 

available at: http://cormas.cirad.fr/en/applica/SimPolilla.htm. 

3) We divulged our results to the general public and to technicians through an article 

published in a popular science magazine  (Crespo et al. 2009, and see Appendix S12) 

which described our cellular automata model and through a free-distribution booklet  

(Carpio et al. 2011, and see Appendix S13) which described the methods for 

integrated pest management proposed by our project. Finally, pest risk maps 

developed during the present study will be made available to the public for 

downloading from the project’s webpage. They may be used by technicians to focus 

their IPM efforts or their farmer training programs in areas with high (or potentially 

high) pest incidence.  

 One of the most important advantages of being part of a larger project was the 

availability of data on PTM and climate monitoring at a regional scale. These data are 

constantly being uploaded to the project’s web page (www.innomip.ird.fr) and are available 

for download for the project collaborators. As stated before insufficient data are a common 

difficulty for modeling in the region. Therefore, approaches such as this one to manage and 

distribute data constitute important advances towards improving both knowledge about these 

pests’ and the capacity to model their dynamics in the North Andean Region.      

PERSPECTIVES    

This dissertation pointed out at several lines of future research and potential applications of 

our modeling approaches. For example, one perspective regarding our cellular automaton is 

the inclusion of data on interactions between the three species of PTM (Mazoyer 2007, 

Dangles et al. 2009b). Such data showed that PTM may interact positively (facilitation) or 

negatively (competition) when inhabiting the same potato tuber, depending on the sequence 

of arrival to the tuber and on the species present. This could allow us to better understand and 

simulate pest propagation in landscapes where more than one species is present. The 

dynamics and influence of natural enemies, such as parasitoids could also be included in our 

model and could be of great help to assess the timing and placement of biological control 

measures. Other interesting biotic interactions that we could consider in future modeling of 
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PTM dynamics is the presence/absence of potato cultures (both spatial and temporal) in the 

region.  

 The high levels of human intervention in the North Andean region and the consequent 

changes associated with it emphasize the importance of including “social scenarios” more 

explicitly in future modeling approaches. For instance, the shift of the agricultural frontier 

towards higher altitudes demands urgent assessment of its influence on pest dynamics. Farmer 

practices to control pests are also a very interesting factor to take into account in models. Our 

team has developed an agent-based model that allows assessing the importance of farmers’ 

mobility and pest control knowledge on PTM expansion (Rebaudo et al. 2011). Such 

approaches may constitute important tools for integrated pest management programs since 

they may help raise awareness of farmers towards the importance of their actions on the 

invasion and spread of pests.    

 Our team is currently studying the existence of microclimates in potato cultures and 

their influence on PTM. This information could later be included in our models and used to 

enhance our comprehension of pest dynamics given this additional source of environmental 

heterogeneity. We are also on the process of developing a simple mechanistic model driven 

by air temperature regimes to simulate temperature inside storage structures. This model, 

along with data on potato storage structure presence, at least from some parts of the region, 

could be incorporated into our PTM population model or our cellular automaton to include the 

influence of this anthropogenic factor on moth dynamic in a more realistic fasion. 

 Data from climate surveys with data-loggers could be used to run our PTM population 

model in specific landcapes and potentially with a higher resolution. This could be quite 

useful for local PTM management programs. For instance, our model may help assess the 

most vulnerable sites to moth invasion in a small landscape where pest control measures (i.e. 

the application of bio-insecticides) should be prioritized. Also, it may help institutions 

concerned with farmer training on IPM to select areas where they should realize their training 

programs.   

 The high variability in daily temperatures observed in the region suggests the 

importance of developing studies about the influence of such variability on moth dynamics 

and on the ability of models to simulate dynamics in variable-temperature regimes (Gilbert et 



220 

 

al. 2004). Also, more information about the species’ responses to variable temperatures and 

on their actual distribution would improve our ability to evaluate our models.  

 Both approaches developed in this dissertation could also be modified to simulate 

dynamics of other species for which information about their temperature-related responses 

and invasion dynamics is available. These could serve as important tools not only for pest 

management purposes but also maybe for conservation issues (Griebeler and Seitz 2002). 
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Abstract 
Agent-based models (ABM) are ideal tools to deal with the complexity of pest invasion 
throughout agricultural socio-ecological systems, yet very few studies have applied them in 
such context. In this work we developed an ABM that simulates interactions between farmers 
and an invasive insect pest in an agricultural landscape of the tropical Andes. Our specific 
aims were to use the model 1) to assess the importance of farmers’ mobility and pest control 
knowledge on pest expansion and 2) to use it as an educational tool to train farmer 
communities facing pest risks. Our model combined an ecological sub-model, simulating pest 
population dynamics driven by a cellular automaton including environmental factors of the 
landscape, with a social model in which we incorporated agents (farmers) potentially 
transporting and spreading the pest through displacements among villages. Results of model 
simulation revealed that both agents’ movements and knowledge had a significant, non-linear, 
impact on invasion spread, confirming previous works on disease expansion by 
epidemiologists. However, heterogeneity in knowledge among agents had a low effect on 
invasion dynamics except at high levels of knowledge. Evaluations of the training sessions 
using ABM suggest that farmers would be able to better manage their crop after our 
implementation. Moreover, by providing farmers with evidence that pests propagated through 
their community not as the result of isolated decisions but rather as the result of repeated 
interactions between multiple individuals over time, our ABM allowed introducing them with 
social and psychological issues which are usually neglected in integrated pest management 
programs. 
 
Keywords: agent-based modeling; socio-ecological systems; farmers; invasive pest; long 
distance dispersion; teaching. 
 

 Introduction 
Agricultural systems are composed by two interlinked and interdependent subsystems, the 
social and the ecological subsystems, which co-evolve and interact at various levels and 
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scales (Liu 2007). As a consequence, these systems are characterized by complex spatio-
temporal dynamics and cultural variation (Papajorgji 2009). The management of agricultural 
invasive pests lies at the heart of such a complexity as pest propagation depends on both 
environmental features (e.g. climate, landscape structure) and farmers’ behaviors (e.g. man-
induced pest dispersion) (Epanchin-Niell 2010). The problems with dealing with multiple 
actors, non linearity, unpredictability, and time lags in invaded agricultural systems suggest 
that agent-based models (ABM) may have an important role to play in the sustainable 
development of farmers’ practices to face those emergent threats (Berger 2001). Although 
ABM have increasingly been applied to physical, biological, medical, social, and economic 
problems (Bagni 2002; Bonabeau 2002; Grimm 2005) it has been, to our knowledge, 
disregarded by invasive pest management theory and practice. 
 
Intrinsic dispersal capacities of agricultural invasive pest (in particular insects) are rarely 
sufficient to make them major threats at a large spatial scale. In most cases, invasive pest 
expansion is dependent on long-distance dispersal (LDD) events, a key process by which 
organisms can be transferred over large distances through passive transportation mechanisms 
(Leiboldt 2008). The study of the dynamics of pest dispersion in agricultural landscape is 
therefore comparable to that of disease contagion:  as diseases, pests are transmitted from an 
infected person (farmer) to another who was previously “healthy”, through different 
biological, social and environmental processes (Teweldemedhin 2004, Dangles 2010). Several 
studies have shown that the dynamics of infection spread involves positive and negative 
feedbacks, time delays, nonlinearities, stochastic events, and individual heterogeneity 
(Eubank 2004; Bauer 2009; Itakura 2010). Two factors have revealed particularly important to 
predict disease dynamics: 1) the number of encounter events between infected and healthy 
individuals, which mainly depends on individuals’ mobility (Altizer 2006), and 2) the 
contamination rate between infected and healthy individuals, which depends on 
heterogeneous susceptibilities of individuals to be infected (Moreno 2002, Xuan 2009). 
Similarly, the spread of invasive pests throughout the agricultural landscape would depend on 
1) movements of farmers carrying infested plants or seeds into new areas and 2) farmer’s 
knowledge to detect the pest (pest control knowledge), therefore avoiding being infested and 
impeding the contamination of new areas (Dangles 2010). 
 
Borrowing from disease contagion literature (e.g. Gog 2007; Yu 2010), we developed, using 
NetLogo (Wilensky 1999), an ABM to simulate the spread of an invasive potato insect pest in 
an agricultural landscape of the tropical Andes. Our model combined an ecological sub-
model, simulating pest population dynamics driven by a cellular automaton including 
environmental factors of the landscape, with a social model in which we incorporated agents 
(farmers) potentially transporting and spreading the pest through displacements among 
villages. We then used our model for two purposes. First, we run the ABM under 10 levels of 
agents’ (farmers) movements among villages and 7 levels of heterogeneity in farmer’s pest 
control knowledge. We compared the resulting diffusion dynamics on the speed of pest 
spread, which represents a relevant metrics for invasive pest management by local 
stakeholders (e.g. the time available for agriculture officials to respond the threat). Second, we 
used our ABM as an education tool to increase farmer awareness on the importance of human-
related LDD events of the pests which fostered the invasions of their valley (see Dangles 
2010). While we specifically focused on an invasive insect pest in the tropical Andes in this 
paper, our approach to understand the influence of farmers’ movements and pest control 
knowledge on pest dynamics and to transfer it through educational programs would be 
applicable to a much wider geographic and species range. 
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Study system 
Our study deals with the potato tuber moth (Tecia solanivora), an invasive pest that has spread 
from Guatemala into Central America, northern South America and the Canary Islands during 
the past 30 years (Puillandre 2008). This pest attacks potato (Solanum tuberosum) tubers in 
the field and in storage and has become one of the most damaging crop pests in the North 
Andean region (Dangles 2008). Commercial exchanges of potato tubers at regional and local 
scales for both seeding and consumption are the main causes for the rapid expansion of the 
pest in all parts of the Ecuadorian highlands (2400-3500 m.a.s.l). These landscapes are 
characterized by highly variable environmental and social conditions due to steep altitudinal 
gradients and dispersed human settlement, respectively.  
 

Model 

Overall structure of the model 
The socio-agronomical framework of the model consists in three key elements (Figure 1): 1) 
the agricultural landscape characteristics provided by a GIS environmental data base 
(Biodiversity Indicators for National Use, Ministerio del Ambiente Ecuador and EcoCiencia 
2005), 2) the insect pest population, and 3) the groups of farmers. Pest dynamics in interaction 
with landscape features (e.g. land use, climate) is simulated through a cellular automaton (see 
the following sub-section). To transfer the cellular automaton into an agent-based simulation 
model we included farmers as agents acting individually upon pest dynamics in the 
agricultural landscape. Pests are therefore represented as a layer in the cellular automaton and 
farmers as agents in the ABM.  
 

 
Figure 1. Schematic representation of the model structure 

 
Modeling pest dynamics through cellular automata  
The spatio-temporal dynamics of potato tuber moth is modeled through a simplified version 
of the cellular automaton developed by Crespo-Pérez (submitted). This model was developed 
with the CORMAS modeling platform (http://cormas.cirad.fr/en/applica/SimPolilla.htm) and 
is detailed in the Appendix 1. Briefly it is based on biological and ecological rules derived 
from field and laboratory experimental data for T. solanivora’s physiological responses to 
climate. Main processes include moth survival (climate dependent), dispersal through 
diffusion processes (density dependent), and reproduction (climate dependent). This model 
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has been validated in a study area of 20 x 20 km within the remote valley of Simiatug in the 
Central Ecuadorian Andes (see section “teaching with the model”) represented by a grid of 
1,600 cells with a cell size of 0.25 km². 
 
Modeling human-related pest dispersion through the agent-based model 
The ABM aims at simulating the influence of farmers on the spatio-temporal dynamics of the 
potato moth. In this particular model, farmers are considered as potential agents for pest LDD, 
for example when they carry infested potato sacks from local markets to their home (other 
interactions with the pest, such as control by pesticide, are not included in this model). Their 
efficiency as LDD agents depends on their pest control knowledge: the higher their 
knowledge, the lower the probability they get their field infested after potato sacks transport 
(see below). 
 
Agent process overview and scheduling 
Agent process overview and scheduling are presented in figure 2. Agents move around on a 
grid of cells whose level of pest infestation is modeled by the cellular automaton (see 
Appendix 1). During each movement within a single timeframe agents turn “infested” (i.e. 
their potato crops are infested by the moth) or remain “non-infested” depending on their pest 
control knowledge and the pest infestation in a given cell. Each timeframe is equal to one 
moth generation (i.e. about 2 months) during which agents can move several times depending 
on their travel decisions. Agents with higher pest control knowledge (e.g. knowing how to 
recognize moth damage when they buy potato sacks at the market) have a lower probability of 
becoming infested. Then, agents move from one village to another to buy and/or sell potatoes. 
Agents’ movements follow a gravity model (Rodrigue 2009), where the attractiveness of a 
village i compared to a village j is a function of both population size and cost-distance 
between them. Village infestation occurs when an infested agent move to a non-infested 
village (carrying infested potato sacks which will be used as potato seeds and thereby infest 
neighboring fields). Agent infestation occurs when a non-infested agent move to an infested 
village (buying infested potato seed sacks), depending on his pest control knowledge (higher 
pest control knowledge lead to lower probability of buying infested sacks). 
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Figure 2. Agents’ processes loop showing how farmers influence pest infestation spread. This loop is 
executed various times depending on farmers’ traveling decisions during each timeframe.  

 
Design concepts 
Agents can sense the pest infestation of the cells but they do not use this information for their 
traveling decision. Instead, agents sense village population size and distance between villages 
so that they are able to perceive the relative cost/benefit of going to each village to sell/buy 
their crop: 1) it is less expensive to travel to closer villages and 2) more populated villages 
provide higher commercial opportunities. As a result, time needed to reach a complete pest 
infestation in the area emerges from a combination of purely biological pest dispersion, 
agents’ movements from village to village and agent’s pest control knowledge. A model 
example is available online at http://www.openabm.org (see “pest dispersion” by innomip). 
 

Testing the effect of agents’ movement and pest control knowledge on pest spread 
dynamics 
 
Effect of agents’ movements  
We examined with our ABM how the number of agents’ movements per generation would 
impact pest invasion dynamics. As we were interested in the early phases of invasions, which 
represent a relevant metrics for invasive pest management by local stakeholders, we used the 
time needed to reach 5% of infested cells as an outcome variable.  
We found that increasing from 1 to 10 the number of agents’ movements in the landscape had 
a negative exponential effect on the spread of the invasive pest (Figure 3 and animation in 
Appendix 2). Invasion speed was particularly increased up to 4 movements and then tended to 
stabilize. As expected, the effect of agents’ movement on invasion speed was intensified by 
the number of agents located on the landscape, but once again this effect was not linear: insect 
pest dynamics was speeded up when adding up to 10 agents but remained roughly unchanged 
for the 10 following ones. For an intermediate scenario (4 movements, 10 agents), the speed 
of invasion was twice faster that of a purely biological spread (i.e. through insect’s dispersion 
capabilities alone). The spatial configuration of the landscape is certainly linked to these 
results (see Figure 4 the frequency of visits of infested agents for each village), and the 
generation of random landscapes could help to quantify the landscape effect on agents’ 
movements and so pest infestation, which hasn’t been explored here. 
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Figure 3. Influence of agents’ movements (per pest generation) on pest infestation dynamics 
for different agent densities (n=2 to 20). The dashed line represents time needed to reach 5% 

of infested cells without agents (purely “biological” spread). 
 
Our results highlight the importance of insect pest passive transportation by humans which 
allows invasive pests to make long-distance dispersal jumps. Even though several authors 
have acknowledged the significance of this type of dispersal for species spread, (e.g., 
Bossenbroek 2001, Suarez 2001) its inclusion in models still poses difficulties for modelers 
(Pitt 2009). Most dispersal models are based on empirically measured rates of pest dispersal, 
while in the case of LDD events it would be more useful to model human behaviors to better 
understand pest invasion dynamics. In this context, ABM offer an interesting yet poorly used 
method, to be applied to the vast field of biological invasions (see Luo 2010 and Vinatier 
2009 for one of the rare study on exotic species using ABM, although in their case, agents are 
the invasive species). Results of our ABM simulations further revealed non linear processes 
between farmers’ behavior (e.g. movement) and densities and pest spread, as already shown 
for disease expansion by epidemiologic models (e.g. Gog 2007). This suggests that a good 
understanding of social network structures would be a key step to better predict pest invasion 
speed in human dominated landscapes. In this context, ecologists would gain in following the 
path traced by epidemiologists with ABM to better understand the dynamics of invasive pests. 
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Figure 4. Frequency of visits of infected agents for each village and map of the Simiatug 

valley with agents’ movements and villages localization. 
 
Effect of agent’s heterogeneity in pest control knowledge 
We then explored with our ABM how agents’ pest control knowledge (ranked from 0 to 100) 
would impact pest propagation dynamics. As pest control knowledge was usually variable 
among farmers (Dangles 2010), we were interested in examining the influence of 
heterogeneous levels among agents on pest spread dynamics. To achieve this goal, we tested 7 
levels of heterogeneity (standard deviation = 0, 5, 10, 15, 20, 25, 30) around 10 mean values 
of pest control knowledge (mean = 0 to 100). For each simulation, agents’ pest control 
knowledge levels were randomly chosen from a Normal distribution, N(mean, standard 
deviation).  
Our simulations revealed that agents’ pest control knowledge had a significant effect on pest 
invasion dynamics (Figure 5 and animation in Appendix 3). In all simulations, lower agents’ 
pest control knowledge led to higher invasion speed, almost twice faster than intrinsic pest 
dispersion spread for highest infectivity values. Agents’ movement had a worsening effect, 
with faster invasion occurring for higher agent’s mobility. Agents’ heterogeneity in pest 
control knowledge had a weak effect on pest dynamics, especially for high agents’ mobility (6 
and 4). However, heterogeneity in knowledge did introduce some sochasticity in invasion 
dynamics when agents seldom moved.  
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Figure 5. Influence of agents’ pest control knowledge (means) and heterogeneity (standard 

deviation = 0 to 30%) on pest infestation dynamics for three frequencies of movements (6, 4, 
and 2). The dashed line represents time needed to reach 5% of infested cells without agents 

(purely “biological” spread). 



254 
 

 
As reported by epidemiologists for disease spread (e.g., Newman 2002), our results showed 
that agents’ pest control knowledge had an important impact on the dynamics of pest invasion 
spread. This suggests that farmers’ pest control knowledge would be a key, yet poorly studied, 
variable to take into account for modeling pest invasions in agricultural landscapes. Less 
expectedly, we found that heterogeneity of knowledge among agents had a relatively weak 
effect on pest dynamics, especially for high mobility levels of agents. This contrast with 
epidemiological models which have generally shown that heterogeneous populations enhance 
the spread of infections as well as make them harder to eradicate (for a review see Anderson 
1992). One potential explanation is that the limited number of villages used in our study favor 
infestation mixture among agents and rapidly smooth up its impact on invasion spread 
dynamics. However, our results showed that when all agents are “healthy” (pest control 
knowledge = 100), any addition of agents with lower levels of knowledge will considerably 
speed up pest dynamics (especially at high levels of movements), thereby confirming 
predictions of disease spread theory. 
 

Teaching with the model 
In a second step, we used our ABM as an educational tool to teach farmers about potential 
invasion risks resulting from individual behaviors. Teaching activities were realized in 
February 2009 at the Agriculture and Technology College of the Simiatug valley in the central 
Ecuadorian Andes. This parish is comprised of roughly 45 kichwa communities living 
between 2800 m and 4250 m of altitude, that share similar characteristics in terms of social 
organization, date of establishment, and agricultural practices. Currently, about 25,000 people, 
mainly subsistence and market-oriented farmers, live in the Simiatug parish. The main 
agricultural products are pasture, cereals (barley), legumes (fava bean) and potatoes as well as 
cattle and sheep (see more details in Dangles 2010). Although the remoteness of the valley 
protects it against moth invasion, increasing commercial exchanges from and to Simiatug are 
currently increasing the risk of moth introduction. Local farmers were therefore interested in 
learning about potential risks associated with the pest and how to control their spread in the 
valley.  
 
Model introduction to the farmers 
Introduction of the models and variable representation to the farmers has been a long process 
that began with the educational program set up in 2007 (Dangles 2010, see the timeline of the 
ground work in Figure 6). 
 

 
Figure 6. Timeline of the groundwork prior to the teaching session 
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For this program, we held a negotiation session to insure that teaching was driven by farmers’ 
interests followed by a training session on integrated pest management and on participatory 
monitoring of potato moth in the valley. After the data analysis session, farmers had acquired 
a rather clear connection between pest abundance and air temperature, village size and 
remoteness (see Dangles 2010, for a detailed description of the sessions with farmers). This 
initial process allowed us to introduce our model in a second step and to use it as a teaching 
tool. Farmers were young (17 to 25 years old) and showed innate interest in “playing” with 
the computers and seeing simulations (an Internet café just opened in Simiatug the year before 
starting the ABM teaching session). The model was presented as a way to better understand a 
result that farmers themselves had found: the importance of LDD in moth dispersion (see 
Dangles 2010). 
 
Model parameterization 
For teaching purposes, farmers were separated into two, “blue” and “red” teams; having two 
teams that compete for minimization of pest presence in the valley stimulated enthusiasm 
among farmers. Each member of the team was asked to fill a questionnaire including 20 
items, 10 on basic issues (biology and ecology of the pest) and 10 on applied issues (pest 
management). A facilitator helped the players to fill in these questionnaires. Based on filled 
questionnaires, we built a “pest control knowledge index” for each farmer, which 
corresponded to the percent of questions answered correctly. Farmers were also asked to 
answer questions about their travel behavior in the valley (destination and frequencies). 
Villages’ locations and population sizes were defined by farmers using maps (see figure 7). 
Environmental data such as temperature or precipitation were updated using real values in the 
considered area (Dangles and Carpio, unpublished data provided with the model in the 
openabm.org website).  
 

 
Figure 7. Teaching with an agent-based model in an agricultural valley of Ecuador 

 
 
Playing and learning with the agent-based model 
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Once input data were collected and set up (Table 1), we ran the model and registered the 
spread of the pest throughout the valley. In all simulations, agents are randomly located at the 
beginning of the run.  
 
 
Table 1. Parameters and simulation results of the gaming session with farmers.  

Parameters Parameters values used for the 
gaming session 

Parameters values at the end of 
the gaming session 

Parameterization   

Number of farmers (agents) 10 10 

Number of agents’ movements per 
timeframe (pest generations) 

6 3 

Pest control knowledge (following a 
Normal distribution ~N(mean, sd)) 

∼N(0.4;0.1) ∼N(0.8;0.1) 

Results   

Time needed for complete infestation 
(pest generation) 

39 45 

 
Our model output could separate between 1) cells infested due to LDD events made by the 
blue team, 2) cells infested by red team LDD and 3) cells infested by insect’s own dispersal 
capabilities (see http://www.openabm.org; see “pest dispersion” by innomip). Each team was 
therefore able to visualize its relative impact on moth dispersion throughout the Simiatug 
valley through the main color of a spatial interface representing the landscape. They were 
further invited to “play” with the simulation interface by changing LDD and the pest control 
knowledge values and to see the consequences in terms of moth spread throughout their 
valley. A synthesis of the processes involved in the teaching session (including required time) 
is given in Table 2. 
 
Table 2. Processes and time required for teaching and learning 

Gaming session process Main activities Time spent 

Introduction Overall presentation of all actors 1 hour 

Computer presentation Presentation of computer simulation utility  30 minutes 

Model adoption: building 
community map (villages and 
populations) 

Presentation of the spatial representation of the 
model 

30 minutes 

Model input variables (interviews) Model parameterization 1 hour 

Model output variables Running the model with the two teams, result 
presentation and discussion 

1 hour 

Playing session 1: farmer 
movements and pest infestation 
spread 

Farmer teams modify agents’ movements and 
visualize consequences on pest spreading  

30 minutes 

Playing session 2: farmer 
knowledge and pest infestation 
spread 

Farmer teams modify agents’ pest control 
knowledge and visualize consequences on pest 
spreading 

30 minutes 

Conclusion and evaluation General discussion with farmers and interviews 1 hour 
 
Model adoption 



257 
 

Because participants were young farmers we had no problem related to potential technical, 
cultural, knowledge or attitude barriers. One of the main difficulties related to model adoption 
turned out to be the spatial representation of farmer’s villages, which was partially solved by 
building with them a digital map of their valley. Another difficulty was that farmers had a 
hard time in associating grid cell colors with the presence of moths. Unfortunately, we could 
not fix this problem during the teaching session and this was probably one of the main 
drawbacks of our approach. However, since this date, we improved the simulation to integrate 
the drawing of moths spreading on the cellular automata grid in a simple model aimed at 
improving its adoption (see http://www.openabm.org see “pest dispersion version 1” by 
innomip).  
 
Benefits of model-based teaching to farmers 
At the end of the session we re-evaluated participant pest control knowledge on basic and 
practical moth control issues with the same 20-item indicators questionnaire (see above). The 
mean pest control knowledge (percent of questions answered correctly) increased from 40 ± 
10 (basic) and 40 ± 20 (practical) at the beginning of the session to 80 ± 10 (basic), and 80 ± 
10 (practical) at the end of the session, suggesting that farmers would be able to better manage 
pest risks after the teaching sessions. As a whole, our educational program (2007-2009) 
indeed enhanced local awareness about the need to control the pests before they became too 
numerous and covered the whole landscape. The main specific management decision taken by 
farmers was a promise to systematically check for moth infestation when buying potato tubers 
in the Simiatug market before transportation to their community (see also Dangles 2010). 
Although farmers vouched for model’s attractiveness and usefulness to learn about pest 
problems, it remained hard to quantify knowledge enhancement specifically due to the ABM 
as opposed to that due to the rest of the educational participatory program. However, we 
believe that the use of ABM and computers significantly complemented our educational 
program on pest management in the valley as it had a clear consequence in enhancing young 
farmers’ interest in agricultural issues. The College of Simiatug indeed suffered from an 
increasing lack of interest from students of agriculture disciplines in favor of 
technical/computational ones. Our program showed young farmers that both disciplines could 
be merged and that they could find through the Internet (http://www.innomip.com) 
computational tools to increase their knowledge on pest management. Our study is a 
preliminary approach in the use of ABM for pest management issues. Further efforts should 
be done to optimize model adoption process such as the early identification of gaps in 
farmers’ knowledge (Wilson 2009), the consideration of peak-labor periods (White 2005) or 
the social network of learners (Boahene 1999).  
 
Another achievement of ABM was that, by providing farmers with evidence that pests 
propagated through their community not as the result of isolated decisions by individuals but 
rather as the result of repeated interactions between multiple individuals over time, our ABM 
pointed at key psychological and social issues, highly relevant for efficient management of 
invasive pests (Peshin 2008). ABM may therefore be a powerful tool to advance the 
application of social psychology theory by stakeholders in rural communities (Smith 2007) 
and to change individual attitudes (Jacobson 2006). This suggests that new approaches in pest 
management extension practices should include topics such as group decision making, 
intergroup relation, commitment, and persuasion which deal directly with how other farmers 
influence one’s thoughts and actions (Mason  2007; Urbig 2008). By examining group- and 
population-level consequences on invasion process, agent-based modeling may therefore 
reveals as a powerful pedagogical approach to change behaviors across large populations, a 
long lasting issue in pest management outreach programs worldwide (Feder 2004). 
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Conclusion 
We showed in this study that agent-based modeling may be a powerful tool to simulate 
invasive pest spread in human dominated landscapes. Our simulations further revealed that 
both farmers’ movements and pest control knowledge could significantly impact invasion 
speed and should be considered as key variables to better predict pest invasion dynamics in 
agricultural landscapes. Regarding the use of ABM as educational tools, we found that new 
technologies (computers) increased the interest of young farmers in learning about how to 
better face pest problems. Although we would need to design proper studies to better 
understand the specific ways ABM fosters learning processes, the introduction of ABM into 
learning environments located in remote places may promise to improve education of farmers, 
especially young ones. For example, ABM can be integrated into interactive websites or 
burned on a CD and be available to farmer communities in which technology access increases 
rapidly thanks to governmental initiatives. In view of the growing threat made by emergent 
insect pests worldwide, especially in remote and poor localities, further efforts to include cost-
efficient ABM into integrated pest management programs may represent a promising line of 
research and applications. 
 

Appendices description 
Appendix 1. Description of the cellular automaton used to simulate the pest model using the 
ODD protocol (Grimm 2006). 
 
From Appendix 2 to 4, representing animated simulations, blue and red figurines represents 
agents, and blue and red links agents’ movements form village to village. The number in the 
top right corner corresponds to the number of timeframe and the background color to the pest 
infestation (black: no pest infestation ; green: pest infestation due to purely biological 
diffusion ; red and blue: pest infestation due to an infected agent movement). At the end of 
each animated simulation, the area to the right remains uninfected. This area corresponds to 
higher elevations where the pest can not survive. 
 
Appendix 2. Animated simulations showing the effect of agents’ movements on the pest 
spread with 2 movements per timeframe and 6 movements per timeframe. The pest infestation 
is quicker when agents move more. 
 
Appendix 3. Animated simulations showing the effect of agents’ pest control knowledge 
without heterogeneity on the pest spread with a mean pest control knowledge of 0 and 100. 
When the pest control knowledge is high, the pest can only disperse through diffusion (i.e. 
very slowly), compared to a simulation when pest control knowledge is low, where the agents’ 
behaviors lead to a full infestation by long distance dispersal events form village to village. 
 
Appendix 4. Animated simulation of the game session. Parameters are presented in Table 1. 
The simulation ran to reach full infestation of the landscape suitable for the pest. Integrating 
real distribution of pest control knowledge (Normal distribution), we observed that almost all 
the landscape is infested due to long distance dispersal events. It revealed the importance to 
focus on pest control knowledge reinforcement to reduce the incidence of the pest at the 
landscape level. 
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