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Abstract

BACKGROUND: Azadirachtin is a prominent natural pesticide and represents an alternative to conventional insecticides.
It has been successfully used against insect pests. However, its effects on reproduction require further analysis. Here we
investigated lethal and sublethal effects of azadirachtin, on treated adults in a model insect, Drosophila melanogaster (Meigen).
Dose–mortality relationships as well as several parameters of reproduction (mating, spermatogenesis, oogenesis and fertility)
were examined.

RESULTS: Neem-Azal, a commercial formulation of azadirachtin, applied topically on newly emerged adults, increased mortality
with a positive dose-dependent relationship. The LD50 (0.63 𝝁g) was determined 24 h after treatment using a non-linear
regression. Adults surviving this dose had a mating success that was divided by 3 and a progeny production reduced by half when
males were treated, and even more when females were treated. When combining probability of survival, of mating and reduced
progeny, it appeared that LD50 induced a 98% reduction in reproductive rates. Reduced progeny was partially explained by the
effect of adult treatment on gametes number and abnormalities. The number of cysts and the apical nuclei positions within the
cysts decreased by 29.7% and 20%, respectively, in males. In females, the number of oocytes per ovary and the volume of basal
oocytes also decreased by 16.1% and 32.4%, respectively.

CONCLUSION: Azadirachtin causes significant toxic effects in both sexes and decreases the fecundity and fertility of D.
melanogaster. Females are more sensitive to azadirachtin.
© 2017 Society of Chemical Industry

Supporting information may be found in the online version of this article.
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1 INTRODUCTION
Crop losses caused by pests may represent the equivalent of
the food needed to feed over 1 billion people.1 The use of pes-
ticides is therefore required to protect agrosystems. However,
their side effects induce important health2,3 and environmen-
tal problems.4,5 Consequently, natural compounds with pesticidal
properties (biopesticides) have been investigated for decades and
offer a more sustainable solution to pest control than synthetic or
conventional products.6–8

Azadirachtin, a tetranortriterpenoid derived from the seeds of
the Indian neem tree (Azadirachta indica A. Juss, Meliaceae), is one
of the main commercialised biopesticides and remains the most
successful botanical pesticide in agricultural use worldwide.9,10

It possesses a strong toxicity against insect pests of different
orders.9,11–14 Besides its insecticidal action, azadirachtin is also
used in traditional medicine, in Asia and in Africa as an antidiabetic,
immunostimulant, antimicrobial, antiviral, contraceptive and anti-
cancer remedy.15–17

Azadirachtin is an insecticide with rapid biodegradability and
without resistance problems due to its chemical complexity.9

This pesticide is also reported to be relatively safer than most
conventional insecticides.18,19 It is non-toxic to humans and
warm-blooded vertebrates20 and without genotoxicity for
mammals.21,22 However, because azadirachtin acts as an insect
growth disruptor,23 negative side effects on beneficial arthropods
are expected. Studies have reported various effects of neem
products on non-target species, such as mites, parasitoids and
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bees.24–29 For example, behaviour and morphological alterations
have been highlighted in bees,29 while Bernades et al.27 did not
detect any effect on worker bee mortality, flight, or respiration
rate. The large panel of potentially affected functions and appar-
ent contradictory conclusions are caused by the level of action of
azadirachtin. This molecule interferes with the endocrine system
by impairing juvenile hormone (JH) and 20-hydroxyecdysone
(20E) pathways, which are involved in the regulation of many
physiological functions.9 Thus azadirachtin induces growth and
moulting abnormalities and can cause significant alterations in the
reproductive system of both male and female insects, including
ovarian and testes development, fecundity, fertility, oviposition
and egg viability.9,12,30–32 Azadirachtin also shows moderate to
strong cytotoxicity, neurotoxicity and antimitotic effects.9,33,34

It acts on the expression of genes related to development in
Drosophila melanogaster.18 These studies provide knowledge
about the range of functions potentially affected by this molecule,
but the effects of azadirachtin on reproductive parameters would
benefit from being investigated more deeply. The extensive use of
D. melanogaster, as a model species for toxicological studies and
the wide knowledge acquired about its physiology, endocrinol-
ogy and genetics, could be instrumental in achieving a precise
understanding of pesticide effects on reproduction. Therefore,
the aim of this study was double: on the one hand, it quantified
the side effects of azadirachtin on D. melanogaster flies using
doses allowing 25% and 50% of survivors, i.e. mimicking possible
exposure to the insecticide residues; on the other hand, it filled
some gaps in evaluating azadirachtin reprotoxic effects in both
sexes. Effects were assessed (1) following treatment on newly
emerged adults, and (2) on various reproductive traits of adult
males and females. Previous studies have already shown that
azadirachtin impacts the reproduction of D. melanogaster treated
at the larval35 and pupal stages.36 Thus, we considered its impact
on the survival of progeny at various development stages and on
fertility in both sexes. We quantified the mating process, fecundity
of males and females (number of cysts and potential abnomalities
of spermatocyte nucleus positions; number of oocytes and size
of basal oocyte) and number of progeny produced by surviving
adults (numbers of eggs, larvae, pupae and adults obtained at
the F1 generation). A toxicity study was first carried out to deter-
mine lethal doses for D. melanogaster adults in our experimental
conditions.

2 MATERIAL AND METHODS
2.1 Insect rearing
Drosophila melanogaster (Canton-S) was reared on standard
corn-meal medium at 25 ± 2∘C, 70% relative humidity under a
12-h light/dark photoperiod. Flies were transferred every 3 days
to avoid larval competition and to regularly provide abundant
progeny for testing.

2.2 Insecticide and toxicity tests
The Neem Azal, commercial formulation (1%; TrifolioM GmbH;
Lahnau, Germany), was used. It has the advantage of containing
only azadirachtin as an active substance, but at an affordable price,
and at a low concentration, ensuring safe use to the experimenters.
Sundaram et al.37 showed that pure azadirachtin and commercial
formulations had similar effects in the spider mite, Tetranychus
urticae.37,38 Neem Azal was dissolved in acetone and applied
topically on adults (sexes combined after screening and showing

any difference between male and female) less than 6 h after
ecdysis (1 𝜇L per insect according to Di Prisco et al.).39 Control
insects were treated with solvent alone. Five doses (0.1, 0.2, 0.4,
0.6 and 1.2 𝜇g of Neem Azal acetone solution) were tested,36

considering three replicates per dose, each consisting of 300
insects. Adult mortality percentages were calculated between
24 and 96 h after treatment and corrected in accordance with
Abbott.40 A non-linear regression was used to determine the lethal
doses (LD) LD25 and LD50, corresponding to 25% and 50% of adult
mortality respectively, with their corresponding 95% fiducial limits
(95% FL) and Hill slope.

2.3 Mating assays
Newly emerged male and female flies (<6 h post-emergence) were
separated and treated topically with azadirachtin. Then control
(MC, FC) and treated (MT, FT) males and females were placed in vials
according to sex (25 mm in diameter, 95 mm in height) containing
a standard corn-meal medium. After 48 h, one male and one
female were placed together in individual vials with food for the
mating assay. Two conditions were tested: MC + FC and MT + FT,

and matings were monitored for 3 h in the morning. The number of
vials in which mating occurred was counted. Results are presented
as a mating percentage in each group.

2.4 Cyst parameters in males
Developmental factors leading to male infertility were investi-
gated by analysing post-meiotic abnormalities, i.e. cyst numbers
and spermatocyte nucleus localisation, both parameters influenc-
ing the number of sperm produced.41 Newly moulted male adults
(< 6 h) were treated topically with azadirachtin at the LD50 (0.63
𝜇g). Individuals from the control and treated series were placed
in vials containing standard corn-meal medium. After 48 h, testes
were dissected in a phosphate-buffered saline (PBS) solution with
4′,6-diamidino-2-phenylindole (DAPI) allowing nuclei staining.42

Cysts were gently spread on the blade and covered with a cover
slip. Cysts were then observed under a fluorescence microscope
and the number of cysts per male and the position of spermato-
cyte nuclei within the cyst were counted. Thirty repetitions per
condition were performed.

2.5 Ovarian parameters in females
To detect a possible impact of azadirachtin on female fecundity,
classical ovarian parameters were investigated (number of oocytes
and size of basal oocyte). Newly emerged female adults (< 6 h)
were treated topically with the azadirachtin at the LD50 (0.63 𝜇g).

Individuals from the control and treated series (LD50, 0.63𝜇g) were
placed in vials containing standard corn-meal medium. After 48
h, ovaries were dissected out. After removal of the circumovarian
fat body, the numbers of oocytes were scored together with the
volume of the basal oocyte.43

2.6 Progeny output
Newly moulted (< 6 h) D. melanogaster adults were treated
topically with azadirachtin at the LD25 and LD50. Subsequently,
one male and one female from the control and treated series
were placed in a Petri dish (90 × 14.2 mm) containing stan-
dard corn-meal medium to obtain their progeny. Eight repeti-
tions of different types of couples were realised (control male +
control female; control male + female LD25; male LD25 + control
female; male LD25, + female LD25; control male+ female LD50; male
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LD50 + control female; male LD50 + female LD50). After 48 h, the
adults were removed and generation 1 (F1) was followed daily
until all adults had emerged. The numbers of eggs, larvae, pupae
and adults that emerged from each series of experiments were
counted.

2.7 Statistical analysis
The mean ± standard deviations (SD) were calculated for each
experimental group. Data from the toxicity assay were anal-
ysed using non-linear sigmoid curve fitting. The goodness of fit
to the curve model was evaluated on the basis of R2 values.
The homogeneity of variances was checked using Bartlett’s and
Shapiro–Wilk tests. Analyses of variance (one-way and two-way)
were performed and followed by Tukey’s HSD test for multi-
ple comparisons when significant. Repeated-measure ANOVA was
also used for progeny output between stages for the same cou-
ple. Chi-squared was performed for anomalies of spermatocyte
nucleus positions. Numbers of cysts and ovarian parameters were
compared between the treated and control groups using Stu-
dent’s t test. In mating experiments, the treated group was com-
pared to the control group using Fisher’s exact test. All calcu-
lations were performed using GraphPad Prism (v6.01 for Win-
dows; Available at: http://fr.freedownloadmanager.org/Windows-
PC/GraphPad-Prism.html).

3 RESULTS
3.1 Insecticidal activity
Azadirachtin, applied topically on newly emerged adults of D.
melanogaster, induces an insect mortality 24 h after treatment.
Corrected mortality percentages were 13.92 ± 1.43% for the low-
est dose (0.1 𝜇g) and 71.80 ± 3.11% for the highest dose (1.2 𝜇g).
The mortality percentage recorded in untreated animals was 5.48
± 0.53% (control mortality, Fig.1). Statistical analysis revealed a sig-
nificant dose effect (F4, 10 = 62.43; P < 0.0001) and Tukey’s HSD test
showed a significant increase in mortality with increasing doses
(Fig. 1). The lethal doses (LD) recorded with 95% fiducial limits (95%
FL) were LD25 = 0.23 (0.13–0.38), LD50 = 0.63 (0.44–0.91) and LD90

= 4.85 (1.47–15.98) 𝜇g (Table 1). The non-linear regression fitted
on these results indicated a Hill slope of 1.08 (0.54–1.62). No sig-
nificant effect of the time elapsed after treatment (24 to 96 h) was
observed (F5, 60 = 1.05; P = 0.39; Table 2).

3.2 Mating tests
In D. melanogaster, azadirachtin applied topically (LD50) on the
day of adult emergence induced, 48 h after treatment, clear
effects on mating success (Fig. 2). In the treated group, the mating
percentage significantly declined compared to controls (MT + FT:
13.8% vs MC + FC: 43.2%; Fisher’s exact test, P < 0.001).

3.3 Cyst parameters
The effect of azadirachtin treatment was tested on male fecun-
dity. Azadirachtin was applied topically at LD50 (0.63 𝜇g) on male
D. melanogaster on the day of emergence. The number of cysts
per testis was counted 48 h after emergence. Control adults dis-
played 28.47 ± 2.16 cysts per testis. This number decreased sig-
nificantly after topical application of azadirachtin and reached
20 ± 1.69 (t58 = 3.08; P = 0.003) (Fig. 3A). In addition, the per-
centage of spermatocyte nuclei in abnormal position significant
increased in LD 50 males (𝜒2 = 5.30, 1; z = 2.30, P = 0.021)
(Fig. 3B).
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Figure 1. Toxicity of azadirachtin tested by topical application, at different
doses, on the day of Drosophila melanogaster adult emergence: corrected
mortality (%) at 24 h (mean ± SD; n = 3 replicates of 300 insects). Control
mortality: 5.48 ± 0.53%. Different letters indicate a significant difference
between control and treated series according to Tukey’s HSD test.

Table 1. Toxicity of azadirachtin tested by topical application, at dif-
ferent doses, on the day of Drosophila melanogaster adult emergence:
lethal doses and their fiducial limits

Parameter Dose (𝜇g) Fiducial limits

LD 90 4.85 1.47–15.98
LD 50 0.63 0.44–0.91
LD 25 0.23 0.13–0.38
Hill slope 1.08 (0.54–1.61)
R square 0.96

Table 2. Toxicity of azadirachtin tested by topical application, at dif-
ferent doses, on the day of Drosophila melanogaster adult emergence:
corrected mortality (%) from 24 to 96 h (mean ± SD; n = 3 replicates of
300 insects)

Time (h)

Dose
(𝜇g) 24 48 72 96

0.1 13.92 ± 1.43A 15.96 ± 2.19A 14.72 ± 2.24A 14.65 ± 0.97A

0.2 26.16 ± 3.58B 23.67 ± 1.13B 28.12 ± 1.22B 27.77 ± 5.84B

0.4 34.84 ± 0.44C 33.85 ± 4.61C 35.02 ± 5.92C 34.89 ± 4.57C

0.6 43.16 ± 0.74D 42.46 ± 2.49D 43.42 ± 2.47D 43.87 ± 6.90D

1.2 71.80 ± 3.11E 69.88 ± 1.13E 70.45 ± 6.20E 69.88 ± 1.16E

Means followed by the same uppercase letter do not differ significantly
according to Tukey’s HSD test at the level P = 0.05.

3.4 Ovarian parameters
The effect of azadirachtin treatment was tested on female fecun-
dity. Azadirachtin was applied topically at LD50 (0.63 𝜇g) on
female D. melanogaster on the day of emergence. The num-
ber of oocytes was counted 48 h after emergence. We found
a significant decrease in the number of oocytes in the treated
series (13.90 ± 0.55) compared to controls (16.57 ± 0.53; t58 =
3.43; P = 0.0011, Fig. 4A). Furthermore, the volume of the basal
oocyte showed a reduction in treated females (0.0048 ± 0.0003
mm3) compared to controls (0.0071 ± 0.0005 mm3) (t58 = 3.87;
P = 0.0003, Fig. 4B).
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Figure 2. Effects of azadirachtin on mating percentages observed 48
h after treatment (0.63 𝜇g) by topical application on the day of adult
emergence of D. melanogaster (mean with 95% confidence intervals); MC:
male control; FC: female control; numbers within each bar indicate the
number of repetitions. *** Indicates significant differences, P ≤ 0.001.
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Figure 3. Effects of azadirachtin applied by topical application (0.63 𝜇g) on
day of Drosophila melanogaster adult emergence on male fecundity param-
eters (mean ± SD). (A) Number of cysts per testis 48 h after emergence. (B)
Percentage of spermatocyte nuclei in abnormal position. Numbers within
each bar indicate the number of repetitions. * Above bars indicates signif-
icant difference at P ≤ 0.05. ** Above bars indicates significant differences
at P ≤ 0.01.

3.5 Progeny output
To evaluate the progeny from surviving treated adults, we moni-
tored the different developmental stages (eggs, larvae, pupae and
adults) in the progeny of couples formed with control animals
(female, FC; male, MC) and/or animals treated with the LD50 (female,
FT, male MT). Statistical analysis showed a significant decrease in
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Figure 4. Effects of azadirachtin applied by topical application (0.63 𝜇g)
on the day of Drosophila melanogaster adult emergence on female fecun-
dity parameters (mean ± SD). (A) Number of oocytes per ovary 48 h after
emergence. (B) Volume of the basal oocyte 48 h after emergence. Num-
bers within bar indicate the number of repetitions. ** Above bars indicates
significant differences P ≤ 0.01. *** Above bars indicates significant differ-
ences, P ≤ 0.001.

the numbers of eggs, larvae, pupae and adults in the F1 generation
for all treated series compared to couples from control individ-
uals (repeated-measure ANOVA: treatment effect: F6, 42 = 241.90,
P < 0.0001; stage effect: F3, 21 = 15.94, P < 0.0001; interaction:
F18, 126 = 0.60, P = 0.89; Fig. 5). The comparison of the different
series revealed a significant dose effect. Irrespective of the devel-
opmental stage considered, Tukey’s HSD test detailed three groups
(MC +FC >MT +FC >MC +FT =MT +FT). This result reveals a greater
sensitivity of females to azadirachtin.

In addition, for all stages evaluated, a dose-dependent effect was
noted and a more significant reduction was recorded at the LD50

than at LD25 (Fig. S1, Supporting Information).

3.6 Reproductive rate
When taking into account the observed effects on survival, mat-
ing success (see section 3.2) and progeny survival (section 3.5),
by multiplying the probabilities of survival and of mating by the
mean progeny number per couple, it is possible to infer that a
treated couple (with both sexes treated with LD50) would pro-
duce a progeny of ∼0.6 individuals [P(survival male) x P(survival
female) x P(mating) × adult progeny = 0.5*0.5*0.138*17], while
a control couple (neither sex treated) would produce ∼31 indi-
viduals [P(mating) × adult progeny = 0.432*72]. Consequently,
azadirachtin treatment at LD50 is evaluated to induce a 98% reduc-
tion in reproductive yield.
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Figure 5. Effect of azadirachtin tested by topical application (0.63 𝜇g),
on the day of Drosophila melanogaster adult emergence, on the number
of progeny (eggs, larvae L3, pupae, adults; MC: male control; FC: female
control; MT: male treated; FT: female treated) (mean ± SD; n = 8 by couple).
Different letters indicate a significant difference between the control and
treated series of the same stage of development at level P ≤ 0.05.

4 DISCUSSION
In this study, we investigated the effects of azadirachtin on adult
toxicity and reproduction in a model insect D. melanogaster.
Azadirachtin, applied topically on newly emerged adults, induced
comparable mortality when evaluated at different times (24–96
h) after treatment. This result is in agreement with those of
Andreazza et al.44 on two other Drosophilidae, Drosophila suzukii
(Matsumara) and Zaprionus indianus (Gupta). Azadirachtin acts
with a dose–response relationship and the LD50 we obtained
(0.63 𝜇g or 630 ppm, evaluated 24 h after treatment) is close
to that found for D. melanogaster last larval instar also by topi-
cal application.35 Azadirachtin seems less toxic (1.17 𝜇g) when
applied on newly formed pupae of D. melanogaster.36 Neem oil,
another azadirachtin formulation applied topically at the same
stage, induces similar toxicity in Drosophila36 despite a different
composition in the formulation. The most likely explanation
for this effect is a lower susceptibility due to the metabolism
or penetration through the cuticle (puparium) at this stage of
development. Nevertheless, the pupal stage, a critical phase for
adult formation, remains very responsive to azadirachtin36 due to
a drastic remodelling of most tissues and organs.45

Azadirachtin presents a stronger toxicity in D. suzukii and Z.
indianus adults compared to D. melanogaster.44 Indeed, a con-
centration of only 12 ppm causes 40% mortality in those species.
Similar observations were reported by De Andrade-Coelho et al.46

in female adults of another Diptera, Lutzomyia longipalpis (Lutz
and Neiva). Previously, azadirachtin was reported to impair, with
variable effects, the survival of different insect species.9,11–14,44–51

Strong variations in insects’ susceptibility to azadirachtin were
noted depending on insect order, species, formulation, or the
method of application.9,11–14,25–29,44–51 Sensitivity of insects to
insecticides varies also with the regulation of plasma membrane
receptor52 and/or ion channels,34,52 penetration rate through the
cuticle,23 absorption by insects,23 transport in tissues of the body23

and metabolism.23

Several mechanisms may be at play in causing acute azadirachtin
toxicity. The effects of azadirachtin on adult mortality may be
linked to the cytotoxicity and induction of apoptosis via the
impairment of insulin-signalling pathway53 known to interact
with JH and ecdysteroid54,55 hormones inhibited by this insecti-
cide. Azadirachtin-induced apoptosis causes general disruption

in the organs of D. melanogaster56 and in other species.9,53,57 In
particular, detrimental effects on various tissues, such as muscles
(suppressed peristalsis), fat body and gut epithelial cells, have
been reported.9,58 A decrease of food intake and biochemical
effects (decrease of 𝛼-amylase, chitinase, proteases and lipases),
published recently59 in D. melanogaster, may also contribute to
azadirachtin acute toxicity. For instance, azadirachtin affects the
chitin present60 in the peritrophic membrane so that midgut
protection against the mechanical damage and toxic compounds
is impaired.60

Ecdysteroids, JH and insulin-signalling pathways play a crucial
role in reproduction of D. melanogaster54,55 and observations
made in the current study indicate that fecundity and fertility
in this species are adversely affected by azadirachtin treatment,
resulting in a decreased progeny. First, we observed an impaired
mating success after azadirachtin treatment. Then we found
a reduced progeny. We also observed a reduction in cyst and
oocyte numbers and also an increase in spermatocyte nucleus
abnomalities and a decreased size of basal oocytes. All these
gamete defects can explain the reduced progeny of treated
adults. Together, reduced mating success and lower progeny
suggest a strong deleterious impact (98% reduction) of LD50

azadirachtin treatment on reproductive yield.
Mating in D. melanogaster can be affected by azadirachtin

because JH is required and plays an important role in this reg-
ulation processes in this species.61 Moreover, ecdysone and JH
seem to regulate the onset of female sex pheromone production,62

mating62 and some aspects of courtship in D. melanogaster.61 In
addition, the decision to engage courtship activities can be influ-
enced by neuromodulators like dopamine (DA),63 and recent stud-
ies show that the insulin-signalling pathway regulates JH and DA
metabolism in D. melanogaster.63

Azadirachtin was found to inhibit oogenesis and spermiogenesis
in several species.9,64 Our observation of decreases in the number
of oocytes and in the size of the basal oocyte can be explained
by the severe degeneration of follicle cells, fragmentation in the
germinal vesicle9 and alterations of mitochondria caused by this
insecticide.65 Azadirachtin also alters or prevents the formation of
new actin cytoskeleton resulting in the disruption of cell division
and nutients transport.9 This disruption may affect the process
of dumping the cytoplasmic contents of nurse cells to the ovo-
cyte and impact vitellogenesis.66 Furthemore, azadirachtin inter-
feres with ecdysteroid synthesis and vitellogenin synthesis (and/or
its uptake), affecting oocyte development via JH9,64 as noted in
D. melanogaster.36 The impact of azadirachtin on D. melanogaster
adult females, as highlighted here, thus may be related to the fact
that JH stimulates vitellogenesis for the developing oocytes and,
together with 20E and insulin-signalling pathways,53–55,66,67 con-
trols the nutrient-sensitive checkpoint in oogenesis.53–55 Reduc-
tion in the cyst number and the abnomalities observed can be
explained by the impact of azadirachtin on the meiotic process
responsible for sperm production and on histological and cel-
lular structures.9 Indeed, in Mylabris indica males (Coleoptera),
Vivekananthan et al.68 showed changes in the testes, such as vac-
uolation, shrinkage of testis cyst cells, clumped and fragmented
chromatin materials, and disintegration and degeneration of germ
cells, such as spermatogonia, spermatocytes, spermatids and sper-
matozoa. These effects of azadirachtin, in adult males, could be
explained by the antagonistic action on ecdysone required for
spermatogenesis; besides, JH is also needed for protein synthe-
sis in male accessory glands.54 Our last experiment, showing
a reduced progeny in the treated adults, also suggested that
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Drosophila females are more sensitive than males despite a similar
recorded toxicity. This effect may be explained by the distinct phys-
iologies of the two sexes.69 For instance, Argue et al.69 did indeed
show a sexually dimorphic role of JH and presented DA as a candi-
date neuronal factor that differentially interacts with JH depending
on the sex of the animal. Furthermore, the reduction of the egg
layer can be explained by the neurotoxic effect34 of azadirachtin
that can interfere directly34 or indirectly54,55 on different step of the
reproductive process in D. melanogaster70 (e.g. follicular adrener-
gic signaling in ovulation or oviducte peristalsis).

5 CONCLUSION
Our study shows strong toxic effects of azadirachtin, from 24 h
after topical treatment in D. melanogaster. We highlight a more
drastic impact of azadirachtin on progeny output in treated
females compared to males, even if this species is less sensitive
than the targeted ones.11,44,46 The impact of azadirachtin on
D. melanogaster may be explained by the widely documented
inhibition of JH and ecdysteroids,9 and their interaction with
insulin-signalling pathways.54,55 Further investigations are now
needed to achieve a better understanding of these effects and par-
ticulary the difference in sensitivity between the sexes. In addition,
the molecular tools available when working with D. melanogaster
should be instrumental for identifying the mechanisms of action
of azadirachtin. On a more applied level, our results may provide
interesting information for developing reproduction-control mea-
sures against the invasive Drosophila suzukii,44 especially since
azadirachtin is recommended in integrated pest-management
programmes.11
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