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after horizontal transfer of a bacterial α-amylase
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Abstract

Background: Increasing genome data show that introns, a hallmark of eukaryotes, already existed at a high density in
the last common ancestor of extant eukaryotes. However, intron content is highly variable among species. The tempo of
intron gains and losses has been irregular and several factors may explain why some genomes are intron-poor whereas
other are intron-rich.

Results: We studied the dynamics of intron gains and losses in an α-amylase gene, whose product breaks down starch
and other polysaccharides. It was transferred from an Actinobacterium to an ancestor of Agaricomycotina. This gene
underwent further duplications in several species. The results indicate a high rate of intron insertions soon after the gene
settled in the fungal genome. A number of these oldest introns, regularly scattered along the gene, remained conserved.
Subsequent gains and losses were lineage dependent, with a majority of losses. Moreover, a few species exhibited a
high number of both specific intron gains and losses in recent periods. There was little sequence conservation around
insertion sites, then probably little information for splicing, whereas splicing sites, inside introns, showed typical and
conserved patterns. There was little variation of intron size.

Conclusions: Since most Basidiomycetes have intron-rich genomes and this richness was ancestral in Fungi, long before
the transfer event, we suggest that the new gene was shaped to comply with requirements of the splicing machinery,
such as short exon and intron sizes, in order to be correctly processed.
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Background
The ongoing debate on the origin and evolution of spli-
ceosomal introns in eukaryotes has shifted in the last
few years on the origin of variations in intron density in
genomes, and correlatively, on the relative rates of gain
and loss of introns. Indeed, whole genome sequencing of
a variety of eukaryote species has revealed an impressive
diversity of intron contents. There are intron-poor spe-
cies, mostly unicellular, such as Saccharomyces cerevisiae,
Guillardia theta, Encephalitozoon cuniculi. Intron-rich
species are often multicellular, for example vertebrates,
the worm Caenorhabditis elegans, the fungus Phanero-
chaete chrysosporium, the sea squirt Ciona intestinalis.
Intron-rich unicellular organisms also exist, like the
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green alga Chlamydomonas [1,2]. Several studies have
concluded that the last eukaryote common ancestor
(LECA) had a mild to high intron density (e.g. [1,3-7].
However, it seems that the subsequent history, during
lineages diversification, has been quite diverse, with
massive losses in some lineages, bursts of intron gains
followed by either stases or losses, or reset of intron posi-
tions in others [1,2,4,7-12]. Several possible reasons have
been proposed to explain the contrasted current situ-
ation: low population sizes allowing fixation of mildly
deleterious introns [13], variable balance between differ-
ent mechanisms of DNA repair [14], selection for opti-
mal exon size, due to spliceosome requiremements [15],
nonsense mediated decay (NMD) [16]. Many studies
have shown a large excess of intron losses relative to
gains, especially when related species were compared
[9,17-22]. Comparisons of a single gene among more or
less related species have also suggested that intron losses
l Ltd. This is an Open Access article distributed under the terms of the Creative
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outnumbered intron gains since the split of the species
studied from their common ancestor. Moreover, repeated,
independent loss of the same intron (in the same position)
was often noticed [23-27]). In contrast, until recently, clear
recent intron gains had not been frequently identified (e.g.
[28,29]). Some gain cases inferred from a given data set
appeared, after further sampling, to be recurrent losses
[22]. However, some cases of gains outnumbering losses
were reported in fungi [30]. Indeed, recent population gen-
omic studies and increasing sequence data show that gains
are still occurring [31,32]. We still have little knowledge of
the real tempo of intron gains and losses during evolution
along a lineage and the factors that influence it. Dynamics
of intron gains and losses in the course of evolution is an
attracting issue, given its biological significance. A method
for addressing this issue is to survey eukaryote genes hori-
zontally transferred recently from bacteria, which are de-
void of spliceosomal introns [21]. Recent transfers followed
by intron insertions may give insights into the pace and dy-
namics of gains, provided that the HGTcould be dated.
In vertebrates and possibly other intron-rich genomes,

it has been shown that exons exceeding a certain size
may be misrecognized by the splicing machinery [15,33],
or prone to premature termination codons, due to the
unability for NMD to act upon [16]. We hypothesize
that in such intron-rich genomes, intronless genes stem-
ming from horizontal transfer from bacteria should be
quickly invaded by introns to shorten the exon size. The
NMD hypothesis also posits that introns should be
inserted regularly along the gene. Indeed, a study of
HGT genes in fungal genomes, mostly Ascomycetes,
showed a correlation between intron densities in trans-
genes of bacterial origin and the recipient genomes [34].
Here we studied an α-amylase gene, previously identified
in a Basidiomycete, the white rot Phanerochaete chrysos-
porium [35], that was transferred from an Actinobacter-
ium to Agaricomycotina. Alpha-amylases often form
multigene families, and most Basidiomycetes already har-
bor at least one fungal-type α-amylase gene (Carbohydrate
Active Enzymes database www.cazy.org [36]). Basidiomy-
cetes are ancestrally intron-rich [7]. In this new gene of
bacterial origin, we have identified intron gains and losses
that occurred since the gene settled in the fungal genome
and we estimated the rates of gains and losses, and some
characteristics of the introns inserted.

Methods
The sequence jgi|Phchr1|7087| from Phanerochaete
chrysosporium, already reported to encode an animal-
type α-amylase [35] was used as a query for BLASTP
search in GenBank nr and GenBank Fungal Genomes
(http://blast.ncbi.nlm.nih.gov), and BLASTP search imple-
mented in the Mycocosm data base at the Joint Genome
Institute (http://genome.jgi-psf.org/programs/fungi/, [37]).
The putative retrieved orthologs were then aligned using
MAFFT [38] implemented in the Geneious software (Bio-
matters Ltd.), and manually corrected for erroneous intron-
exon structures when necessary. Those errors were
detected when large unique amino acid insertions or dele-
tions were evidenced in the alignment. In these cases, when
available and if necessary, expressed sequence tags (EST)
were used to confirm intron positions and boundaries. The
query sequence contained a C-terminal carbohydrate bind-
ing module of the CBM20 family. A number, but not all
retrieved sequences possessed a terminal CBM20 domain
of variable length, always containing introns. Because it was
not present in every sequence, the CBM20 was no longer
considered and the alignment was truncated to the C-
terminal end of the core protein. Intron positions were
mapped onto the alignment according to the annotations
of the genomes, mainly those deciphered at the JGI. From
this protein alignment, after curation of the alignment with
Gblocks [39] leaving 398 positions (83%) available, a gene
tree was built using PhyML [40], at the www.phylogeny.fr
web server [41]. After testing various models with MEGA5
[42], we used the WAG substitution matrix with a gamma
distribution of substitution rate across sites (the shape par-
ameter α was estimated from the data with four rate cat-
egories). The robustness of the nodes was estimated by 100
bootstrap replicates.
A few species were also investigated experimentally using

polymerase chain reaction. DNA samples were supplied by
the Hibbett Laboratory at Clark University or purchased
from the Centraalbureau voor Schimmelcultures at the In-
stitute of the Royal Netherlands Academy of Arts and
Sciences. The primers and experimental conditions are
given in Additional file 1: Table S1. Only partial sequence
data were obtained from the following species related to
P. chrysosporium: Phlebia radiata FPL6140, P. albomellea
CBS 275.92, Grifola frondosa MO11 (accession numbers
JX310736-JX310738).
In order to infer the antiquity of the α-amylase gene

transfer from a bacterium, and the times of intron inser-
tions, we estimated the ages of nodes in a species tree. A
fungal species tree was established by compilation of recent
literature, which included the species of interest for our
study, but also Ascomycetes ([43-51] and especially [52]),
and unpublished data kindly shared by D. S. Hibbett and
by the Joint Genome Institute (Binder et al. in prepar-
ation) for solving uncertain relationships. We performed
a Bayesian analysis with the BEAST program [53]. An
alignment was performed for 54 fungal species, using
protein sequences of elongation factor 1-alpha, RNA
polymerase II largest and second large subunits (EF1α,
LSU1 and LSU2, Additional file 2: Table S2) aligned sep-
arately using MAFFT [38], then concatenated. After cur-
ation for badly aligned regions with Gblocks [39], 1671
amino acid positions remained. The tree made from the
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alignment was constrained to match the established spe-
cies tree topology. We estimated divergence times using
BEAST v1.7.1 [53], assuming a relaxed uncorrelated log-
normal molecular clock model, a Yule speciation process
for tree prior, and a WAG + Γ substitution model. The
analysis was run for 12 million generations, saving a tree
every 1,000th generation. The resulting log file was
inspected with Tracer v1.5 [54] to verify that the sample
size was large enough to give good estimations of posterior
distributions. We found that the steady state had been
already reached after two millions generations. After re-
moving the first 2,000 trees as burn-in, the remaining
10,000 sampled trees were analyzed with TreeAnnotator
v1.7.1 [53] to estimate the 95% highest posterior intervals
of the divergence times. Fossil calibration was possible at
two nodes : divergence between Ascomycetes and Basidio-
mycetes was set to 600 Ma [55], and divergence between
Eurotiomycetes and Sordariomycetes was set to 410 Ma,
the age of the oldest likely Sordariomycete [56,57].
In order to show the occurrence of HGT and its origin, a

general gene tree of glycosyl hydrolases of the GH13 fam-
ily, which have a broad activity range [58], from various
organisms was built from a structural alignment as
described in ref. [59], adding the sequences studied here.
Gains and losses of introns were inferred in a weighted

(Dollo) parsimony framework, considering parallel losses
much more frequent than parallel gains [60], as in [27].
Using Mesquite v. 2.75 [61], we tried parsimony and ML
scenarii for intron gains and losses directly on the gene
tree. Because numerous gene duplications and gene
losses occurred, we tried to reconcile the gene and spe-
cies trees using Notung 2.6 [62]. The program MALIN
[63] infers the evolution of exon-intron structure in
protein-coding orthologs. It could not be used, though,
because orthology relationships among the genes could
not be solved in most cases (see Results). Finally, the loss
and gain events were mapped onto the species tree, not
the gene tree. The average rates of intron gains and
losses per million year and per branch were computed
by considering that events occurred evenly along a
branch. For example, if three losses occurred along a
branch 12 Ma in length, the loss rate was 3/12 per Ma.
Then, the rates for all branches present at a given time
were summed and averaged.

Results
Gene transfer from a bacterium
We first performed TBLASTN and BLASTP searches
against GenBank using the candidate α-amylase gene
Phchr1|7087|. The best hits belonged to a few Basidio-
mycetes (Serpula lacrymans, Schizophyllum commune,
Piriformospora indica) and then a lot of Bacteria, mainly
Actinomycetales. No other fungus was found within the
100 first hits, except Moniliophthora perniciosa (Agaricales,
Marasmiaceae), a truncated sequence which will be no
longer considered here (MPER_11606), and a single Asco-
mycete species, Chaetomium globosum, already reported to
harbor a similar α-amylase gene (CHGG_04966), but with
a distinct bacterial origin [35]. However, most fungal gen-
ome data have not been deposited yet to GenBank. Thus,
we searched for genes similar to our P. chrysosporium
query in the Mycocosm database at the JGI. Our BLAST
searches against all fungal database available to us (fungal-
genomes.org) retrieved a total of 42 sequences with high
similarity to the P. chrysosporium query (BLASTP expect-
value < 10-109 in the Mycocosm database) from 24 species
only, all Basidiomycetes. This confirmed the limited phylo-
genetic distribution of this gene among Fungi, and thus
supported its likely bacterial origin. Figure 1 shows a tree
of α-amylases of the GH13 family [64] from various pro-
karyotes and eukaryotes. This important enzyme group
was divided in subfamilies [58]. The tree shows that the
genes we recovered in Basidiomycetes are grouped among
Actinobacteria GH13_32 α-amylases, supporting an actino-
bacterial origin of the donor species. A very recent study
supports this conclusion [65]. The phylogenetic distribu-
tion of the recovered genes is limited to Agaricomycotina,
suggests that the HGT event took place rather basally in
Basidiomycetes, but after the split from Tremellomycetes,
probably at the basal node of Agaricomycotina. Interest-
ingly, according to the phylogenetic distribution of the
genes, a few species seem to have lost this α-amylase: the
clade containing Postia placenta, Wolfiporia cocos and
Fomitopsis pinicola, and the clade containing Coprinopsis
cinerea and Laccaria bicolor. The Bolete Paxillus involutus
also lacks the gene (not shown). The gene was duplicated
independently in several lineages, with for instance four
copies in Stereum hirsutum. In addition to these 42
sequences, two other Basidiomycete sequences from the
remote Pucciniomycetes Melampsora laricis-populina
(Melpl1|90587|) and Puccinia graminis (Pucgr1|25736|)
were retrieved, with much lower similarity with the P. chry-
sosporium query (expect value ca. 10-67 and 10-76, respect-
ively), but they probably have an origin distinct from the
gene studied here, although bacterial too, given their pos-
ition in the tree (Figure 1 and Additional file 3: Table S3).

Intron richness, gains and losses
As many as 480 introns that map at 64 intron positions
were identified (Figure 2 and Additional file 4: Figure S1).
The number of introns per gene ranged from 8 (Gano-
derma sp. Gansp1|123688|) to 22 (e.g. Stereum hirsutum
Stehi1|95395|), with 13.3 introns/gene on average, not
counting the CBM20 extension. This high density consid-
erably exceeds the average values for Basidiomycete gen-
omes, which range from 3.8 to 5.7 introns/gene (data from
the JGI). In addition, we found no correlation between the
average genomic intron density and the intron density in



Figure 1 Tree of glycosyl hydrolases of the GH13 family. Full gene and species names and taxonomic positions are given in Additional file 3:
Table S3. GH13 subfamilies [58] are colour-labelled and indicated by their numbers next to the species names. The fungal genes studied in this
work are indicated by an asterisk. Bootstrap values are shown along the branches.
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the HGT Amy genes (not shown), in contrast to a previous
study [34]. This may be explained by the fact that all the
species in our study fall within a relatively narrow range of
genomic intron density, compared to the span of the study
cited above, which included Ascomycetes, that are more
intron-poor, and by the likely large within-genome vari-
ance. We were unable to identify the origin of any inserted
introns (donor DNA). Indeed, intron sequences diverged
too fast to allow alignment between orthologous introns
even between closely related species, such as P. chrysospor-
ium and P. carnosa.
In order to reconstruct the history of intron insertions

and losses, we ideally should map the intron gain and
loss events onto the gene tree, applying a parsimonious
or maximum likelihood model. We tried to apply a parsi-
mony analysis on the unmodified gene tree using
Mesquite v2.75 [61]. This led to at least 23 occurrences
of parallel gains, counting parallel gains as the number of
gain events at a given intron position, minus one. We
obtained a similar result in a maximum likelihood ana-
lysis, parametered with a bias of gains over losses of 1:10
(not shown). Actually, the gene tree built from our data
(Additional file 5: Figure S2) had a number of weakly
supported nodes and was incongruent with the currently
known species phylogeny, and thus failed to clarify the
history of the gene family since the time it was trans-
ferred into an ancestral genome. High divergence be-
tween gene copies, multiple independent duplications
and paralog losses may have obscured the phylogenetic
signal. HGT may also have occurred between fungal spe-
cies (see e.g. ref. [66]). However, our data show no clear
evidence for this, except for Bjerkandera adusta (see



gene/species nb. of introns CBM 1 2 3 4 5 6 7 7a 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 23a 24 25 26 27 28 28a 29 30 31 32 33 34 35 36 37 38 38a 39 39a 39b 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
Ph. chrysosporium 7087 9 CBM20
Ph. carnosa259593 11 CBM20
Ph. carnosa259591 11 CBM20
Phlebiopsis33454 11 CBM20
Bjerkandera_55696 8 no * *
Bjerkandera_141648 8 no * *
Bjerkandera_45153 9 CBM20
Ceriporiopsis|Cersu1|156021 11 CBM20
Ceriporiopsis|Cersu1|93449 10 ?
Trametes versicolor 30524 10 CBM20
Ganoderma 105279 9 CBM20
Dichomitus|Dicsq1|125666 10 CBM20
Ganoderma 123688 8 no
Dichomitus|Dicsq1|68009 9 no
Grifola frondosa
Phlebia albomellea
Phlebia radiata
Phlebia brevispora 17677 11 CBM20
Pleurotus.ostreatusPC15_1095839 10 CBM20
Pleurotus |PleosPC9_1|91049 11 no
Pleurotus |PleosPC15_2|20823 10 no
Agaricus bisporus Agabi varbisH97 9 no
Schizophyllum 107514 10 no
Schizophyllum 67047 11 no
Coniophora|Conpu1|108744 13 CBM20
Serpula|Serla_S7_9|416686 17 CBM20
Stereum|Stehi1|78757 21 CBM20
Stereum|jgi|Stehi1|83072 10 no
Stereum|Stehi1|159685 11 no
Stereum|Stehi1|95395 22 CBM20
Heterobasidion|Hetan2|65781 20 CBM20
Punctularia|Punst1|74571 8 no
Punctularia|Punst1|118997 17 no
Punctularia|Punst1|140991 14 CBM20
Gloeophyllum|Glotr1_1|121909 17 CBM20
Gloeophyllum|Glotr1_1|131585 20 ?
Jaapia|Jaaar1|259682| 21 CBM20
Jaapia|Jaaar1|34862| 20 CBM20
Jaapia|Jaaar1|193532| 19 CBM20
Fomitiporia|Fomme1|130910 16 CBM20
Auricularia|Aurde1|116714 12 CBM20
Piriformospora indica CCA69087 11 no *
Botryobasidium Botbo1|39864| 22 CBM20
Botryobasidium Botbo1|38238| 22 no
Dacryopinax|Dacsp1|51007| 20 ?

Figure 2 Intron positions in the transferred α-amylase gene homologous to Phchr1|7087| found in Fungi. Pink dots: phase 0 introns;
green dots: phase 1 introns; blue dots: phase 2 introns. Shaded regions represent unknown sequences. The black bar is a region of uncertain
annotation. Asterisks indicate possible cases of intron sliding. CBM20 indicates the presence of an additional carbohydrate binding module of the
CBM20 family. The number of introns is meant without the CBM20 extension.

Da Lage et al. BMC Evolutionary Biology 2013, 13:40 Page 5 of 13
http://www.biomedcentral.com/1471-2148/13/40
below). Studying synteny among species (Mycocosm
website) was no more helpful to uncover orthology rela-
tionships, because of quick loss of synteny, except in
closely related species. Therefore, we attempted to recon-
cile the gene tree with the known phylogeny using the
Notung software [62]. We obtained a complex history,
with 19 duplications and 56 gene losses (default para-
meters, with rearrangement option and rooting with
Stehi1|78757|, Additional file 6: Figure S3). Moreover,
some major branches were marked as weak by the pro-
gram. This may be due to the low support values at a ma-
jority of nodes (Additional file 5: Figure S2). Therefore,
we mapped the intron gains and losses on a species tree
(Figure 3) from the data of Figure 2, in a weighted
parsimony framework. With this method, the possible
parallel gains were limited to positions 2, 4, 21 and
24. Intron gains were rather easily inferred. Clearly,
there has been a relatively rapid invasion of the pri-
marily intronless gene by introns after its transfer into
the ancestral genome. According to our reconstruc-
tion, 17 extant introns are ancestral, since they are
still shared together by the single copy of the early
branching-off Dacryopinax sp. and a number of other
species. Among them, 9 are still widely distributed.
Note that Dacryopinax sp. has three specific introns.
We considered those introns as specific gains, but this can-
not be ascertained without additional data from other early
diverging species. To infer intron losses, when several cop-
ies were present in a species, for each intron position, we
distinguished between intron losses in all gene copies, and
intron losses in some, but not all gene copies. Intron losses
in all copies were counted as a single event, because it was
rarely possible to discriminate between parallel losses in
paralogs and a single event prior to duplication, thus
probably underestimating the rate of loss. Some examples
for which the gene tree was clear enough to allow more
precise reconstitution of the loss events, were e.g. partial
losses of introns 34 and 39 in Ganoderma sp. and its rela-
tive Dichomitus squalens, or independent losses at posi-
tions 33 and 34 in G. trabeum Glotr1|121909| and P.
strigosozonata Punst1|74571|. Figure 3 shows that the
same set of introns (1, 6, 19, 20, 33, 42, 45) was lost twice,
at two internal nodes, the node basal to Agarics and the
node basal to Polypores. This intriguing result of our re-
construction might reveal hidden paralogy, but the gene
tree was not clear enough to validate this possibility. In-
deed, parallel losses were observed many times in this
study, and are generally considered to be much more fre-
quent than parallel gains. However, it seems unlikely that
such a co-occurrence of parallel losses may have occurred
by chance. On the other hand, the Notung reconciliation
assay was not consistent in this respect, because it did not
propose to group as orthologs the two clades that have lost
this set of introns, as would be expected if we infer a single
occurrence of the loss of the seven introns. Similarly, we
considered that another set of introns (8, 34, 39, 44, 50, 56)
was lost independently along two external branches, Piri-
formospora indica and Auricularia delicata. Simulation
(100,000 trials) suggested that the probability of such 6 par-
allel losses among eight intron losses in a pool of 20
introns was about 1%, at most 3% when considering that
some positions were lost more frequently (estimated by the
actual rate observed in our data set). In the case of these
two species, the gene tree suggested a relationship between
the single-copy genes present in both species. This could
represent the remnant gene copy of two ancestral copies,
which was lost in the ingroup clade, whereas, on the con-
trary, the remaining ingroup copy would have been lost in
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Figure 3 Reconstitution of intron gain and loss events mapped on a species tree. Branch lengths are proportional to time, the time scale in
million years is shown below. Numbers along the branches are intron positions. HGT: horizontal transfer event. Black numbers: intron gains; red
numbers: intron losses in all gene copies in a clade; green numbers: intron loss in some, but not all gene copies in a clade; blue numbers: intron
gains specific to Stehi1|78757|. Black crosses show complete gene losses.
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those two species. Note that the Notung reconciliation
suggests an ortholog relationship of these two genes too.
Then, possible hidden paralogy leads to overestimating the
rate of losses.
We attempted to date divergence times of various

fungal clades in order to date intron gains or losses
(Additional file 7: Figure S4). These values were flawed
by a large variance, due in part to the scarcity of fossils
to be used for calibration and their datation. We esti-
mated that the gene transfer occurred 448–363 million
years ago (Ma). This means that at least 17 gains oc-
curred within a ca. 85 Ma period, which is a high rate
for a single gene. The average apparent rates of gains
and losses per million year and per lineage are shown
on Figure 4. This graph shows that after the initial
burst of gains, few gains took place whereas losses
accumulated. There were exceptions in two terminal
branches, Stereum hirsutum and Punctularia strigosozo-
nata, which both experienced numerous specific gains
and losses. These two species are the main contributors
to the second rise of gains in recent times in Figure 4.
Intron sizes and insertion sites
Overall, the average intron size was 61.6 bp, with a low
dispersion, since the median was 56 bp and the third
quartile was 62 bp. Figure 5 shows the average intron
sizes at positions with more than ten values available.
The sizes fall well within the range of average intron
sizes at the genome level for the species included in the
study. The conspicuous size homogeneity across intron
positions and the generally low standard deviations sug-
gest that intron size, at least in this "young" gene, may
be constrained, e.g. to fit the abilities of the spliceosome.
In eukaryote genomes, an excess of phase 0 introns

was often observed [67,68], including in Fungi [30]. We
did not find such a bias, but rather a slight excess of
phase 1 introns (28/64), however not significantly differ-
ent from a 1:1:1 distribution (χ2 = 3.28 n.s.), not count-
ing the putative slided introns. Results were similar for
the 17 oldest intron positions.
We noticed no spatial preference for intron insertion

(homogeneity test ; the alignment was divided in ten
parts of equal length, p = 0.71, n.s.), except that there



Figure 4 Apparent intron gain and loss rates per million year and per lineage. Gain rates are in blue, loss rates are in red. The X axis is
graduated in million years from the present.
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were no introns in the putative signal peptides. The
NMD hypothesis suggests that introns colonizing an empty
gene would be prone to regular spacing [16]. We checked
whether the 17 ancestral introns were inserted at random
or showed a regular pattern along the coding sequence.
Figure 5 Average intron sizes at positions where more than ten value
bar at position 6 is due to a single long intron in Stehi1|83072|. Red line : a
Dashed lines show standard deviation.
There was no over-regularity compared to random spacing
for these oldest intron positions, as estimated by simulating
10,000 genes with 17 random insertions (p = 0.16). All the
extant genes from our data set were checked as well. Over-
all, there may be some trend towards regular spacing of
s were available. Error bars indicate standard deviations. The long
verage intron size for the whole genomes of all the species studied.
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introns, since about half of the genes showed intron spa-
cing significantly more regular than expected by chance
(Additional file 8: Table S4).
We studied whether introns were inserted into pre-

ferential sequences, according to the protosplice model
[69], and whether local sequence information changed
in the presence vs. in the absence of introns. The
major fact is that overall, considering all intron posi-
tions and phases, there was little information at the
last two exonic 5' and the first two exonic 3' nucleo-
tide positions (Figure 6A and 6B). A slight preference
for G[intron]G was suggested, more visible for phase 1
introns (Additional file 9: Figure S5), as observed earl-
ier (e.g.[70]). When the intron was absent, the level of
information was even lower. This lower information level
in the absence of intron was observed for each phase
considered separately (Additional file 9: Figure S5). We
also compared information level according to the age of
insertions, i.e. recently inserted introns vs. the 17 oldest
positions. Information was slightly stronger around old-
est introns than around more recent introns, although
not significantly (Figure 6C and 6E). Conserved oldest
introns, i.e. still present in most extant genes, had not a
higher informational environment (not shown). One
might assume that their presence in a majority of genes
until now might be related to a strong splicing signal,
avoiding missplicing, and thus negative selection. We
observed that their conservation until now could not be
explained by a more informative environment. In con-
trast, the level of information increased at oldest posi-
tions after intron loss (Figure 6D). Information content
inside the introns was investigated at the 5' and 3' spli-
cing sites. Sequences complied to a classical consensus
GTrnG. . .yAG. Thirteen introns over 478 (2.7%) had
GC instead of GT as the donor site, consistent with the
1.3% reported by Iwata et al. (2011). There was a
strongly conserved G at position 5, as noticed in Fungi
[71]. However, the prevalence of this G varied accord-
ing to the intron position (e.g. 30 vs. 56) or the species
(Additional file 10: Figure S6). Recent introns showed a
lower information content at positions 3 and 4 of the 5'
splicing site; however, this may be not significant given
the limited sample size.

The case of Bjerkandera adusta. Intron sliding
Bjerkandera adusta is a close relative of Phanerochaete
chrysosporium. It was not included in the analysis shown
on Figure 3 and Figure 4 because, intriguingly, none of
its three gene copies is close to the ones of P. chrysos-
porium or its other relatives. In addition, two copies
(Bjead1|55696|, Bjead1|141648|) share highest sequence
similarity and three intron positions (1, 20, 24) exclu-
sively with remote species such as Stereum hirsutum
(Russulales). This illustrates the complicated gene
history and might raise the possibility of HGT among
fungi. It is also worth noting two occurrences of intron
sliding in those copies of B. adusta at positions 4 and 7
(marked by asterisks in Figure 2). Intron 4 is absent from
most genes. Thus, one can hypothesize an independent
gain, rather than displacement of a preexisting intron. In
contrast, in the case of the widespread intron 7, although it
is absent from the closest sequences Punst1|74571|,
Stehi1|83072| and Stehi1|159685|, one could more likely
infer an intron displacement, one base pair apart (phase 0
vs. phase 1). This new phase 0 intron is located at the same
position as the widespread intron 1 of animals [27]. Intron
sliding was also found in Piriformospora indica (ancestral
position 23).

The case of Stereum hirsutum Stehi1|78757|
We found four copies in Stereum hirsutum. Stehi1|78757|
was the most diverged sequence among all our data set.
Strikingly, most of its 21 intron positions were different
from the positions found in the other genes (Figure 2). This
pattern could be explained by an independent gene inser-
tion from an intronless donor, such as a bacterium or a ret-
rotranscript from an existing copy, followed by de novo
intron colonization. Whatever the origin ot this gene copy,
it highlights the high intron density in a gene of likely re-
cent origin. Note that two possible cases of parallel intron
gains at positions 2 and 4 involve positions found in this
copy. This reinforces the hypothesis of true parallel gains.
The specific introns of Stehi1|78757| account for one third
of the whole number of intron positions.

Discussion
For studying the dynamics of intron gains in eukaryote
genes, it is worth using primitively intronless genes, ori-
ginating from either bacteria or retro-elements. A few
such studies were published recently [73,74]. In a previ-
ous study [27], we had investigated the dynamics of
introns in the α-amylase genes of bilaterian animals,
likely of bacterial origin [35]. The putative HGT event
was about twice as old as the one studied here. We had
retrieved at most three likely ancestral intron positions
and only a minority of positions were shared by several
phyla, so that it was not possible to infer the pace of
intron colonization after the gene insertion. In contrast,
in this study, we have shown that a gene of bacterial
origin, transferred horizontally into a fungus, was
quickly split by numerous introns about 300–400 mil-
lion years ago. The donor was an actinobacterium, and
it is likely that this kind of transfer happened several
times independently. Indeed, the related α-amylase gene
found in P. graminis and M. laricis-populina is most
likely the result of a different transfer event. The pos-
ition of these sequences in the gene tree (Additional
file 5: Figure S2) is clearly not related to the sequences
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Figure 6 Consensus sequences at positions −2 and −1, and +1 and +2 around intron positions, drawn with Weblogo 3.2 [72]
(http://weblogo.threeplusone.com/create.cgi). A: all positions, intron present. B: all positions, intron absent. C: sequence at the 17 oldest
positions when an intron is present; D: sequence at the 17 oldest positions in the absence of intron, i. e. after intron loss; E: sequence at the
recent positions 2, 3, 4, 11, 12, 13, 14, 15, 16, 21, 25, 31, 37, 39a, 47, 48, 51, 52, 55, 57 in the presence of intron; F: same positions as E, in the
absence of intron. Introns of Stehi_78757, of Jaapia argillacea and of Bjerkandera adusta were not included. n is the number of sequences. Y-axis
is graduated in bits of information. Error bars are Bayesian 95% confidence intervals.
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studied here. Moreover, the sequences of these two spe-
cies share 12 intron positions, ten of which are different
from the 64 positions identified in our study, and two
positions are common with the "outlier" gene Stehi1|
78757|. A similar situation was observed in the nad7 gene,
transferred twice independently from mitochondrion in
Opisthokonts and in Chlamydomonas reinhardtii [73]. We
have no evidence that the carbohydrate binding module
CBM20 was co-transferred with the core enzyme gene.
CBM20 domains exist in bacteria, but they are common in
fungal glycosyl hydrolases too [75,76], e.g. in the GH15
family, and may have been recruited later in the HGT
α-amylase gene through domain shuffling.
The time of the HGT is uncertain, given the scarce fos-

sil data that can be used for time calibration. Therefore,
the dates computed here are indicative. It seems however
clear that at least 17 introns were inserted within a rather
short period, before the divergence of Dacryopinax sp.
The origin of these introns could obviously not be
retrieved, given the long time elapsed. Even for more re-
cent introns, e.g. specific introns found in P. strigosozo-
nata or S. hirsutum, it was not possible to identify any
donor sequence. Indeed, among the various mechanisms
proposed for intron gains [2,32,77,78], it has been shown
that new introns may be created by random insertion of
any DNA fragment or nucleotide filling during DNA re-
pair after double strand break [14,31,77,79], which thus
form novel sequences. Comparisons between closely
related species, such as P. chrysosporium and P. carnosa
also shows the fast divergence of introns.
Inferring gain and loss events along lineages was made

difficult by the lack of congruence between the gene tree
and the species tree. Relationships between genes were
not clear, bootstrap supports were often low. As men-
tioned above, hidden paralogy was suspected is several
cases. Only substantial additional data from other species
could help in solving this problem, which led to overesti-
mate the loss rates at some periods. Gains were generally
easily mapped, except a few cases where parallel gains
were proposed. Parallel losses occurred much more fre-
quently than gains, even not counting the possibly mis-
leading hidden paralogies. Intron 7 was lost five times,
intron 34 at least eight times. This is consistent with
many reports showing that parallel losses are common
relative to parallel intron gains (e.g. [60,80]). Correla-
tively, we have shown that, after the initial burst of gains
in the empty gene, the rate of gains dropped and the rate
of losses increased up to a large excess of loss over gain,
as already observed [80,81]. The high activity of specific
gains and losses in a few terminal branches of our data
set, P. strigosozonata and S. hirsutum, remains unex-
plained, especially as there is no such activity in their
relatives (G. trabeum and H. annosum, respectively). This
could be related to the occurrence of several copies,
four and three, respectively. High rates of intron gains
and losses were reported in paralogous genes [82]. In
S. hirsutum, a lot of specific gains occurred in a particular
gene copy, Stehi1|78757|, which has probably a quite dif-
ferent history. It is unclear whether this copy originated in
an independent HGT from a related bacterium or stems
from a processed cDNA. In the latter case, there should be
some sequence similarity with the parent gene, which was
not found in the extant gene copies of this species. This
gene must have been acquired much more recently than
the gene shared by most Agaricomycotina. And yet, it is
very intron-rich. This point adds relevance to our hypoth-
esis that primitively intronless genes in intron-rich gen-
omes are prone to be quickly provided with interrupting
sequences. Rapid acquisition of introns was also observed
in mitochondrial-derived genes, assumed to be primitively
intronless [73] and in mammalian "domesticated genes"
stemming from tranposable elements [74].
The HGT α-amylase gene could be a suitable model

for studying the evolution of information content
around intron sites. However, we found a low level of in-
formation at positions −2 to +2 surrounding intron sites,
contrasting with our results in animals [27], where the
classical AG/G protosplice consensus [69] was majori-
tary. This may indicate an absence of insertional se-
quence preference. As in our previous study, we noticed
an even weaker level of information around empty sites.
Information was not significantly stronger around older
introns than recent introns, but this result suffers from a
low number of data and a high variance for recent inser-
tions. As underlined by Rogozin and colleagues [80],
evolution towards the protosplice consensus may be a
slow process, and our gene may be too recent. The in-
crease of information after loss of old introns is surpris-
ing, because if intron neighborhood is involved in intron
recognition and splicing, which is well established, one
would rather expect a relaxation of constraints after in-
tron loss, thus unbiased base composition.
In contrast, information at both 5' and 3' splicing

sites was strong and typical of fungal introns [71], sug-
gesting that, whereas exonic neighborhood may be not
crucial for splicing, intronic splicing sequences are im-
portant for proper intron recognition. Another import-
ant feature for efficient splicing may be a short intron
size. Indeed, we have shown the low variability of size
in our data set, whatever the species and the intron
position. This could be indicative of a functional con-
straint. This is consistent with [71], who have shown
that short intron sizes contributed importantly to intron
detection in Basidiomycetes.

Conclusion
Altogether, our data suggest that several features were
important to confer to the transferred gene suitable
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characteristics regarding splicing efficiency: short introns;
shortening the exons to a small size through multiple in-
tron gains, although exon sizes were more variable than
intron sizes; and rather regular intron spacing along the
entire gene, perhaps for efficient nonsense mediated
decay [16]. It is not clear whether intron gains were posi-
tively selected. It has been proposed that introns colo-
nized eukaryotic genomes by random fixation in low
population size species, while they were mildly deleteri-
ous [13,83,84]. However, in our case, the HGT gene
settled in a genome that was probably already intron-rich
[7], endowed with a spliceosome adapted to cope with
intron-rich genes. The potential deleterious effect of
inserting an intron might have been balanced by the ad-
vantage of splitting the gene in smaller pieces. Therefore,
one can assume that there was a rather strong selective
pressure for either gene loss, or gene "make-up" to look
like other fungal genes. The ecological advantage of get-
ting new abilities for polysaccharide degradation by gene
capture may explain that this gene was acquired and
made active several times independently. Indeed, acquisi-
tion of bacterial GH or other degrading enzymes by fungi
has been shown to be advantageous [85].
Our results need now to be generalized by investigat-

ing other genes recently transferred from bacteria, in
both intron-rich and intron-poor genomes, in order to
confirm whether introns colonized intronless genes rap-
idly, with a density related to the genome average.
Additional files

Additional file 1: Table S1. List of primers designed for detection of α-
amylase genes orthologous to Phchr1|7087|. PCR conditions were: initial
denaturation 94�C, 6 mn; denaturation 94�C, 25 s; annealing 58�C, 50s;
elongation 72�C, 1 mn, 45 cycles using the Taq Gold polymerase
(Applied Biosystems). Various combinations of forward and reverse
primers were tried.

Additional file 2: Table S2. GenBank or JGI accession numbers of
sequences EF1α, RNA polymerase II LSU 1 and LSU2, used for datation
estimates.

Additional file 3: Table S3. Abbreviations used in Figure 1, and JGI or
Uniprot accession numbers. Colors are as in Figure 1.

Additional file 4: Figure S1. Alignment of the α-amylase protein
sequences studied, built with MAFFT, showing the intron positions. Pink:
phase 0 introns; green: phase 1 introns; blue: phase 2 introns. This
alignment was used, without the N-terminal variable region (signal
peptide), for gene tree reconstruction (Additional file 5: Figure S2). Intron-
slided introns are not shown.

Additional file 5: Figure S2. Gene tree drawn from maximum
likelihood reconstruction and 100 bootstrap replicates (see text). The tree
was rooted with two bacterial sequences. Abbreviations are given in
Additional file 2: Table S1.

Additional file 6: Figure S3. Reconciliation tree made from the gene
tree (Additional file 5: Figure S2) and the species tree (Additional file 7:
Figure S4) with Notung 2.6. The letter D indicate gene duplications, grey
branches are lost genes. Orange lines are weak edges.

Additional file 7: Figure S4. Fungal species tree and divergence times
estimated with BEAST using EF1α+LSU1+LSU2, with dates of divergence
at nodes. Horizontal bars show the 95% highest posterior intervals of the
divergence times.

Additional file 8: Table S4. Analysis of exon size distribution. For each
gene, the effective number of exon was computed according to ref. 16.
The statistical significance was estimated by 10,000 simulations. Ne:
effective number of exons. ns: not significant; *: p<0.05. 5%: value of Ne
below which are the smallest 5% simulated Ne values; 95%: value of Ne
below which are the smallest 5% simulated Ne values.

Additional file 9: Figure S5. Consensus sequences at positions -2 and -
1, and +1 and +2 around intron positions with different phases, drawn
with Weblogo 3.2 [72]. n is the number of sequences. Error bars are as in
Figure 6. A: Phase 0 positions, in the presence of intron; B: Phase 1
positions, in the presence of intron; C: Phase 2 positions, in the presence
of intron; D: phase 0 positions, in the absence of intron; E: phase 1
positions, in the absence of intron; F: phase 2 positions, in the absence
of intron.

Additional file 10: Figure S6. Consensus splicing sites of introns drawn
with Weblogo 3.2 [72]. Left to the vertical dashed line: first five
nucleotides of the 5' splicing site; right to the vertical dashed line: last
three nucleotides of the 3' splicing. n is the number of sequences. Error
bars are as in Figure 6. A: global consensus; B: conserved old introns; C:
recent introns; D: position 30; E: position 56; F: introns of Heterobasidion
annosum; G: introns of Punctularia strigosozonata.
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